On the Computational Complexity of Compressed Power Series

被引:0
|
作者
Karatsuba, E. A. [1 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
algorithm; power series; computational complexity; fast algorithm; FEE method; Faulhaber's formula; Bernoulli numbers; MULTIPLICATION;
D O I
10.1134/S000143462307009X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present computational algorithms and complexity estimates for power series in which all exponents are positive integers raised to one and the same integer power >= 2.
引用
收藏
页码:92 / 98
页数:7
相关论文
共 50 条
  • [1] On the Computational Complexity of Compressed Power Series
    E. A. Karatsuba
    Mathematical Notes, 2023, 114 : 92 - 98
  • [2] REDUCING THE COMPUTATIONAL COMPLEXITY OF RECONSTRUCTION IN COMPRESSED SENSING NONUNIFORM SAMPLING
    Grigoryan, Ruben
    Jensen, Tobias Lindstrom
    Arildsen, Thomas
    Larsen, Torben
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [3] COMPUTATIONAL COMPLEXITY IN POWER-SYSTEMS
    ALVARADO, FL
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1976, 95 (04): : 1028 - 1037
  • [4] DatalogMTL: Computational Complexity and Expressive Power
    Walega, Przemyslaw A.
    Grau, Bernardo Cuenca
    Kaminski, Mark
    Kostylev, Egor, V
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 1886 - 1892
  • [5] ON THE COMPLEXITY OF ALGEBRAIC POWER-SERIES
    ALONSO, ME
    MORA, T
    RAIMONDO, M
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 508 : 197 - 207
  • [6] The complexity of bivariate power series arithmetic
    Bläser, M
    THEORETICAL COMPUTER SCIENCE, 2003, 295 (1-3) : 65 - 83
  • [7] The computational complexity and approximability of a series of geometric covering problems
    M. Yu. Khachai
    M. I. Poberii
    Proceedings of the Steklov Institute of Mathematics, 2013, 283 : 64 - 77
  • [8] The computational complexity and approximability of a series of geometric covering problems
    Khachai, M. Yu.
    Poberii, M. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 : 64 - 77
  • [9] The computational complexity and approximability of a series of geometric covering problems
    Khachai, M. Yu.
    Poberii, M. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (03): : 247 - 260
  • [10] The Computational Power and Complexity of Constraint Handling Rules
    Sneyers, Jon
    Schrijvers, Tom
    Demoen, Bart
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2009, 31 (02):