The computational complexity and approximability of a series of geometric covering problems

被引:0
|
作者
Khachai, M. Yu. [1 ,2 ]
Poberii, M. I. [1 ]
机构
[1] Russian Acad Sci, Inst Math & Mech, Ural Branch, Ekaterinburg 620000, Russia
[2] Ural Fed Univ, Inst Math & Comp Sci, Ekaterinburg 620000, Russia
基金
俄罗斯基础研究基金会;
关键词
NP-complete problem; polynomial-time reduction; Max-SNP-hard problem; L-reduction; polynomial-time approximation scheme (PTAS); APPROXIMATION ALGORITHMS;
D O I
10.1134/S008154381309006X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a series of geometric problems of covering finite subsets of finite-dimensional numerical spaces by minimal families of hyperplanes. We prove that the problems are hard and Max-SNP-hard.
引用
收藏
页码:64 / 77
页数:14
相关论文
共 50 条
  • [1] The computational complexity and approximability of a series of geometric covering problems
    M. Yu. Khachai
    M. I. Poberii
    Proceedings of the Steklov Institute of Mathematics, 2013, 283 : 64 - 77
  • [2] The computational complexity and approximability of a series of geometric covering problems
    Khachai, M. Yu.
    Poberii, M. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (03): : 247 - 260
  • [3] Covering with Clubs: Complexity and Approximability
    Dondi, Riccardo
    Mauri, Giancarlo
    Sikora, Florian
    Zoppis, Italo
    COMBINATORIAL ALGORITHMS, IWOCA 2018, 2018, 10979 : 153 - 164
  • [4] Parameterized Complexity of Geometric Covering Problems Having Conflicts
    Aritra Banik
    Fahad Panolan
    Venkatesh Raman
    Vibha Sahlot
    Saket Saurabh
    Algorithmica, 2020, 82 : 1 - 19
  • [5] Parameterized Complexity of Geometric Covering Problems Having Conflicts
    Banik, Aritra
    Panolan, Fahad
    Raman, Venkatesh
    Sahlot, Vibha
    Saurabh, Saket
    ALGORITHMICA, 2020, 82 (01) : 1 - 19
  • [6] Parameterized Complexity of Geometric Covering Problems Having Conflicts
    Banik, Aritra
    Panolan, Fahad
    Raman, Venkatesh
    Sahlot, Vibha
    Saurabh, Saket
    ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 61 - 72
  • [7] On the Computational Complexity of Optimization Convex Covering Problems of Graphs
    Buzatu, Radu
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2020, 28 (02) : 187 - 200
  • [8] On the approximability of covering points by lines and related problems
    Dumitrescu, Adrian
    Jiang, Minghui
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (09): : 703 - 717
  • [9] The Complexity and Approximability of Minimum Contamination Problems
    Li, Angsheng
    Tang, Linqing
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2011, 2011, 6648 : 298 - 307
  • [10] Theory of periodically specified problems: Complexity and approximability
    Marathe, MV
    Hunt, HB
    Rosenkrantz, DJ
    Stearns, RE
    THIRTEENTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY - PROCEEDINGS, 1998, : 106 - 118