Towards Mutual Trust-Based Matching For Federated Learning Client Selection

被引:1
|
作者
Wehbi, Osama [1 ,2 ]
Wahab, Omar Abdel [3 ]
Mourad, Azzam [2 ,4 ]
Otrok, Hadi [5 ]
Alkhzaimi, Hoda [6 ]
Guizani, Mohsen [1 ]
机构
[1] Mohammad Bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
[2] Lebanese Amer Univ, Dept CSM, Cyber Secur Syst & Appl AI Res Ctr, Beirut, Lebanon
[3] Polytech Montreal, Dept Comp & Software Engn, Montreal, PQ, Canada
[4] New York Univ, Div Sci, Abu Dhabi, U Arab Emirates
[5] Khalifa Univ, Ctr Cyber Phys Syst C2PS, Dept EECS, Abu Dhabi, U Arab Emirates
[6] New York Univ, Div Engn, Abu Dhabi, U Arab Emirates
关键词
Mutual trust; Game Theory; Smart-cities; Smart devices; Federated Learning; Bootstrapping;
D O I
10.1109/IWCMC58020.2023.10182581
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning (FL) is a revolutionary privacy-preserving distributed learning framework that allows a small group of users to cooperatively build a machine-learning model using their own data locally. Smart cities are areas that can generate high volume and critical data, which has the potential to revolutionize federated learning. Nevertheless, it is highly challenging to select a trustworthy group of clients to collaborate in model training. The utilization of a random selection technique would pose many threats due to malicious clients' targeted and untargeted attacks. Such vulnerability may cause attacks and poisoning in the produced model. To address this problem, we present a mutual trust client-server selection approach based on matching game theory and bootstrapping mechanisms for federated learning in smart cities. Our solution entails the creation of: (1) preference functions for federated servers and smart devices (i.e., IoT/IoV) that enables them to sort each other based on trust score, (2) light feedback-base technique that leverages the cooperation of multiple client devices to assign trust value to the newly connected federated server, and (3) intelligent matching algorithms consider trust preferences of both parties in their design. According to our simulation results, our technique outperforms the baseline selection approach VanillaFL in terms of increasing the trust level and hence the global accuracy of the federated learning model and optimizing the number of untrusted selected clients.
引用
收藏
页码:1112 / 1117
页数:6
相关论文
共 50 条
  • [21] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [22] An Efficient Client Selection for Wireless Federated Learning
    Chen, Jingyi
    Wang, Qiang
    Zhang, Wenqi
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 291 - 296
  • [23] A review on client selection models in federated learning
    Panigrahi, Monalisa
    Bharti, Sourabh
    Sharma, Arun
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (06)
  • [24] A Review of Client Selection Methods in Federated Learning
    Mayhoub S.
    M. Shami T.
    Archives of Computational Methods in Engineering, 2024, 31 (02) : 1129 - 1152
  • [25] Client Selection for Federated Learning With Label Noise
    Yang, Miao
    Qian, Hua
    Wang, Ximin
    Zhou, Yong
    Zhu, Honghin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2193 - 2197
  • [26] Trust-based Knowledge Sharing Among Federated Learning Servers in Vehicular Edge Computing
    Mazloomi, Fateme
    Heydari, Shahram Shah
    El-Khatib, Khalil
    PROCEEDINGS OF THE INT'L ACM SYMPOSIUM ON DESIGN AND ANALYSIS OF INTELLIGENT VEHICULAR NETWORKS AND APPLICATIONS, DIVANET 2023, 2023, : 9 - 15
  • [27] GraphCS: Graph-based client selection for heterogeneity in federated learning
    Chang, Tao
    Li, Li
    Wu, MeiHan
    Yu, Wei
    Wang, Xiaodong
    Xu, ChengZhong
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2023, 177 : 131 - 143
  • [28] A Client Selection Method Based on Loss Function Optimization for Federated Learning
    Zeng, Yan
    Teng, Siyuan
    Xiang, Tian
    Zhang, Jilin
    Mu, Yuankai
    Ren, Yongjian
    Wan, Jian
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 1047 - 1064
  • [29] Client selection based weighted federated few-shot learning
    Xu, Xinlei
    Niu, Saisai
    Zhe, Wanga
    Li, Dongdong
    Yang, Hai
    Du, Wenli
    APPLIED SOFT COMPUTING, 2022, 128
  • [30] Securing IoT With Deep Federated Learning: A Trust-Based Malicious Node Identification Approach
    Awan, Kamran Ahmad
    Ud Din, Ikram
    Zareei, Mahdi
    Almogren, Ahmad
    Seo-Kim, Byung
    Perez-Diaz, Jesus Arturo
    IEEE ACCESS, 2023, 11 : 58901 - 58914