Simultaneous B/W dual coating on ultra-high nickel single crystal cathode material for lithium-ion batteries

被引:10
|
作者
Chu, Binbin [1 ]
Xu, Ruoyu [2 ]
Li, Guangxin [3 ]
Chen, Jinyu [3 ]
Xu, Zijian [4 ]
Huang, Tao [3 ]
Wang, Bo [2 ]
Yu, Aishui [1 ,3 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai 200438, Peoples R China
[2] Huawei Technol Co LTD, Cent Res Inst, Watt Lab, Shenzhen, Guangdong, Peoples R China
[3] Fudan Univ, Lab Adv Mat, Shanghai 200438, Peoples R China
[4] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
基金
中国国家自然科学基金;
关键词
Single crystal; B; W surface modification; Lithium -ion batteries; Ni-rich cathode materials; RICH LAYERED OXIDES; NI-RICH; OXYGEN RELEASE; LI-ION; DEGRADATION; DENSITY; COBALT;
D O I
10.1016/j.jpowsour.2023.233260
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ultra-high nickel LiNixCoyMn1-x-yO2 (x > 0.9) cathode material is a prime candidate for powering next -generation electric vehicles. However, its inherent structural instability and complicated interface side -reactions limit its commercialization. Here, the LiNi0.92Co0.04Mn0.04O2 single-crystal cathode material with an average particle size of 1.69 & mu;m is prepared via a simple temperature fluctuation method combined with B and W surface modification. As-formed surface Li-B-O and Li2WO4 lithium ion conductors can successfully enhance the discharge capacity of single crystal LiNi0.92Co0.04Mn0.04O2 from 219.9 to 226.5 mAh g- 1 by facilitating lithium ion diffusion. At 4.5 V, the B and W surface modification significantly enhances the cycle retention from 71.8% to 87.1% at 1 C after 100 cycles due to the construction of a uniform boron-rich cathode/electrolyte interface (CEI) layer. The specific composition of the as-formed CEI film is clearly identified. The analysis results of B and W modifications show that the presence of boron-rich CEI and Li2WO4 coating layer protects the particles from electrolyte erosion under high voltage and enhances lithium-ion diffusion on the particle surface. Therefore, the chemical states of Ni within the particle for B-and W-modified samples are distributed more homogeneously after long cycling.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Identifying degradation mechanisms in lithium-ion batteries with coating defects at the cathode
    David, Lamuel
    Ruther, Rose E.
    Mohanty, Debasish
    Meyer, Harry M., III
    Sheng, Yangping
    Kalnaus, Sergiy
    Daniel, Claus
    Wood, David L., III
    APPLIED ENERGY, 2018, 231 : 446 - 455
  • [42] Surface coating engineering of prelithiation cathode additives for lithium-ion batteries
    Sun, Ying
    Zhang, Jingjing
    Huang, Tao
    Yu, Aishui
    ELECTROCHEMISTRY COMMUNICATIONS, 2024, 163
  • [43] Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries
    Saïdi, MY
    Barker, J
    Huang, H
    Swoyer, JL
    Adamson, G
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (07) : A149 - A151
  • [44] Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries
    Kalluri, Sujith
    Yoon, Moonsu
    Jo, Minki
    Liu, Hua Kun
    Dou, Shi Xue
    Cho, Jaephil
    Guo, Zaiping
    ADVANCED MATERIALS, 2017, 29 (48)
  • [45] Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries
    Saïdi, MY
    Barker, J
    Huang, H
    Swoyer, JL
    Adamson, G
    JOURNAL OF POWER SOURCES, 2003, 119 : 266 - 272
  • [46] Cesium Ion Exchanged Zeolite Coating for High Performance Spinel Cathode Material in Lithium Ion Batteries
    Kim, Dae-Soo
    Lee, Ilbok
    Kim, Jaekwang
    Hwang, Kee Bum
    Kim, Hyosung
    Oh, Seung M.
    Yoon, Songhun
    SCIENCE OF ADVANCED MATERIALS, 2017, 9 (10) : 1843 - 1846
  • [47] Multiple-ion-doped lithium nickel oxides as cathode materials for lithium-ion batteries
    Wang, GX
    Bewlay, S
    Yao, J
    Chen, Y
    Guo, ZP
    Liu, HK
    Dou, SX
    JOURNAL OF POWER SOURCES, 2003, 119 : 189 - 194
  • [48] Lithium-ion battery: A comprehensive research progress of high nickel ternary cathode material
    Chang, Longjiao
    Wei, Anlu
    Luo, Shaohua
    Cao, Shiyuan
    Bi, Xiaolong
    Yang, Wei
    Yang, Ruifen
    Liu, Jianan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 23145 - 23172
  • [49] Nickel-Rich Cathode Yarn for Wearable Lithium-Ion Batteries
    Marriam, Ifra
    Tebyetekerwa, Mike
    Chathuranga, Hiran
    Sun, Kaige
    Du, Aijun
    Yan, Cheng
    ADVANCED FIBER MATERIALS, 2024, 6 (02) : 341 - 353
  • [50] Nickel-Rich Cathode Yarn for Wearable Lithium-Ion Batteries
    Ifra Marriam
    Mike Tebyetekerwa
    Hiran Chathuranga
    Kaige Sun
    Aijun Du
    Cheng Yan
    Advanced Fiber Materials, 2024, 6 : 341 - 353