Anisotropic Fractional Gagliardo-Nirenberg, Weighted Caffarelli-Kohn-Nirenberg and Lyapunov-type Inequalities, and Applications to Riesz Potentials and p-sub-Laplacian Systems

被引:0
|
作者
Kassymov, Aidyn [1 ,2 ]
Ruzhansky, Michael [2 ,3 ,4 ]
Suragan, Durvudkhan [5 ]
机构
[1] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
[2] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[3] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[4] Queen Many Univ London, Sch Math Sci, London, England
[5] Nazarbayev Univ, Sch Sci & Technol, Dept Math, 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
Fractional Gagliardo-Nirenberg inequality; Fractional Caffarelli-Kohn-Nirenberg inequality; Fractional Lyapunov-type inequality; Homogeneous Lie group; HARDY; RELLICH;
D O I
10.1007/s11118-022-10029-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the fractional Gagliardo-Nirenberg inequality on homogeneous Lie groups. Also, we establish weighted fractional Caffarelli-Kohn-Nirenberg inequality and Lyapunov-type inequality for the Riesz potential on homogeneous Lie groups. The obtained Lyapunov inequality for the Riesz potential is new already in the classical setting of R-N. As an application, we give two-sided estimate for the first eigenvalue of the Riesz potential. Also, we obtain Lyapunov inequality for the system of the fractional p-sub-Laplacian equations and give an application to estimate its eigenvalues.
引用
收藏
页码:1971 / 1994
页数:24
相关论文
共 16 条
  • [1] Anisotropic Fractional Gagliardo-Nirenberg, Weighted Caffarelli-Kohn-Nirenberg and Lyapunov-type Inequalities, and Applications to Riesz Potentials and p-sub-Laplacian Systems
    Aidyn Kassymov
    Michael Ruzhansky
    Durvudkhan Suragan
    Potential Analysis, 2023, 59 : 1971 - 1994
  • [2] Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications
    Velicu, Andrei
    Yessirkegenov, Nurgissa
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 247 (02) : 741 - 782
  • [3] Anisotropic Caffarelli-Kohn-Nirenberg type inequalities
    Li, YanYan
    Yan, Xukai
    ADVANCES IN MATHEMATICS, 2023, 419
  • [4] Sobolev, Hardy, Gagliardo-Nirenberg, and Caffarelli-Kohn-Nirenberg-type inequalities for some fractional derivatives
    Kassymov, Aidyn
    Ruzhansky, Michael
    Tokmagambetov, Niyaz
    Torebek, Berikbol T.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
  • [5] On horizontal Hardy, Rellich, Caffarelli-Kohn-Nirenberg and p-sub-Laplacian inequalities on stratified groups
    Ruzhansky, Michael
    Suragan, Durvudkhan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 1799 - 1821
  • [6] Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications
    Abdellaoui, B.
    Bentifour, R.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) : 3998 - 4029
  • [7] A weighted anisotropic variant of the Caffarelli-Kohn-Nirenberg inequality and applications
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    NONLINEARITY, 2018, 31 (04) : 1516 - 1534
  • [8] Lyapunov-type inequalities for the fractional p-sub-Laplacian
    Kassymov, Aidyn
    Suragan, Durvudkhan
    ADVANCES IN OPERATOR THEORY, 2020, 5 (02) : 435 - 452
  • [9] Lyapunov-type inequalities for the fractional p-sub-Laplacian
    Aidyn Kassymov
    Durvudkhan Suragan
    Advances in Operator Theory, 2020, 5 : 435 - 452
  • [10] Sobolev, Hardy, Gagliardo–Nirenberg, and Caffarelli–Kohn–Nirenberg-type inequalities for some fractional derivatives
    Aidyn Kassymov
    Michael Ruzhansky
    Niyaz Tokmagambetov
    Berikbol T. Torebek
    Banach Journal of Mathematical Analysis, 2021, 15