Back to the Source: Diffusion-Driven Adaptation to Test-Time Corruption

被引:5
|
作者
Gao, Jin [1 ]
Zhang, Jialing [1 ]
Liu, Xihui [3 ]
Darrell, Trevor [4 ]
Shelhamer, Evan [5 ]
Wang, Dequan [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
[3] Univ Hong Kong, Hong Kong, Peoples R China
[4] Univ Calif Berkeley, Berkeley, CA USA
[5] DeepMind, London, England
关键词
D O I
10.1109/CVPR52729.2023.01134
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Test-time adaptation harnesses test inputs to improve the accuracy of a model trained on source data when tested on shifted target data. Most methods update the source model by (re-)training on each target domain. While retraining can help, it is sensitive to the amount and order of the data and the hyperparameters for optimization. We update the target data instead, and project all test inputs toward the source domain with a generative diffusion model. Our diffusion-driven adaptation (DDA) method shares its models for classification and generation across all domains, training both on source then freezing them for all targets, to avoid expensive domain-wise re-training. We augment diffusion with image guidance and classifier self-ensembling to automatically decide how much to adapt. Input adaptation by DDA is more robust than model adaptation across a variety of corruptions, models, and data regimes on the ImageNet-C benchmark. With its input-wise updates, DDA succeeds where model adaptation degrades on too little data (small batches), on dependent data (correlated orders), or on mixed data (multiple corruptions).
引用
收藏
页码:11786 / 11796
页数:11
相关论文
共 50 条
  • [1] Contrastive Test-Time Adaptation
    Chen, Dian
    Wang, Dequan
    Darrell, Trevor
    Ibrahimi, Sayna
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 295 - 305
  • [2] Train/Test-Time Adaptation with Retrieval
    Zancato, Luca
    Achille, Alessandro
    Liu, Tian Yu
    Trager, Matthew
    Perera, Pramuditha
    Soatto, Stefano
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15911 - 15921
  • [3] Continual Test-Time Domain Adaptation
    Wang, Qin
    Fink, Olga
    Van Gool, Luc
    Dai, Dengxin
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7191 - 7201
  • [4] Robust Test-Time Adaptation in Dynamic Scenarios
    Yuan, Longhui
    Xie, Binhui
    Li, Shuang
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15922 - 15932
  • [5] Fully Test-Time Adaptation for Image Segmentation
    Hu, Minhao
    Song, Tao
    Gu, Yujun
    Luo, Xiangde
    Chen, Jieneng
    Chen, Yinan
    Zhang, Ya
    Zhang, Shaoting
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 251 - 260
  • [6] Test-Time Adaptation for Deformable Image Registration
    Sang, Y.
    McNitt-Gray, M.
    Yang, Y.
    Cao, M.
    Low, D.
    Ruan, D.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E458 - E459
  • [7] A Probabilistic Framework for Lifelong Test-Time Adaptation
    Brahma, Dhanajit
    Rai, Piyush
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3582 - 3591
  • [8] DomainAdaptor: A Novel Approach to Test-time Adaptation
    Zhang, Jian
    Qi, Lei
    Shi, Yinghuan
    Gao, Yang
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18925 - 18935
  • [9] Video Test-Time Adaptation for Action Recognition
    Lin, Wei
    Mirza, Muhammad Jehanzeb
    Kozinski, Mateusz
    Possegger, Horst
    Kuchne, Hilde
    Bischof, Horst
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22952 - 22961
  • [10] Test-Time Adaptation for Egocentric Action Recognition
    Plananamente, Mirco
    Plizzari, Chiara
    Caputo, Barbara
    [J]. IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 206 - 218