Assembling PNIPAM-Capped Gold Nanoparticles in Aqueous Solutions

被引:2
|
作者
Nayak, Binay P. [1 ,2 ]
Kim, Hyeong Jin [1 ,2 ]
Nayak, Srikanth [1 ,2 ,3 ]
Wang, Wenjie [4 ]
Bu, Wei [5 ]
Mallapragada, Surya K. [1 ,2 ]
Vaknin, David [1 ,6 ]
机构
[1] Ames Natl Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
[3] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[4] US DOE, Div Mat Sci & Engn, Ames Natl Lab, Ames, IA 50011 USA
[5] Univ Chicago, Pritzker Sch Mol Engn, NSFs ChemMatCARS, Chicago, IL 60637 USA
[6] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
POLY(N-ISOPROPYLACRYLAMIDE); TEMPERATURE; AGGREGATION; POLYMERS; CHAIN;
D O I
10.1021/acsmacrolett.3c00617
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Employing small-angle X-ray scattering (SAXS), we explore the conditions under which assembly of gold nanoparticles (AuNPs) grafted with the thermosensitive polymer poly-(N-isopropylacrylamide) (PNIPAM) emerges. We find that short-range order assembly emerges by combining the addition of electrolytes or polyelectrolytes with raising the temperature of the suspensions above the lower-critical solution temperature (LCST) of PNIPAM. Our results show that the longer the PNIPAM chain is, the better organization in the assembled clusters. Interestingly, without added electrolytes, there is no evidence of AuNPs assembly as a function of temperature, although untethered PNIPAM is known to undergo a coil-to-globule transition above its LCST. This study demonstrates another approach to assembling potential thermosensitive nanostructures for devices by leveraging the unique properties of PNIPAM.
引用
收藏
页码:1659 / 1664
页数:6
相关论文
共 50 条
  • [41] Facially amphiphilic thiol capped gold and silver nanoparticles
    Bhat, Shreedhar
    Maitra, Uday
    JOURNAL OF CHEMICAL SCIENCES, 2008, 120 (06) : 507 - 513
  • [42] Fluctuation Spectroscopy Analysis of Glucose Capped Gold Nanoparticles
    Porcaro, F.
    Miao, Y.
    Kota, R.
    Haun, J. B.
    Polzonetti, G.
    Battocchio, C.
    Gratton, E.
    LANGMUIR, 2016, 32 (50) : 13409 - 13417
  • [43] Facially amphiphilic thiol capped gold and silver nanoparticles
    Shreedhar Bhat
    Uday Maitra
    Journal of Chemical Sciences, 2008, 120 : 507 - 513
  • [44] Agglomeration behavior of lipid-capped gold nanoparticles
    Ranjan, Rajeev
    Kirillova, Maria A.
    Esimbekova, Elena N.
    Zharkov, Sergey M.
    Kratasyuk, Valentina A.
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (04)
  • [45] Magnetic properties of thiol-capped gold nanoparticles
    Sungwon Yoon
    K. H. Han
    B. J. Suh
    Z. H. Jang
    J. H. Kim
    D. -Y. Jung
    Journal of the Korean Physical Society, 2012, 60 : 1078 - 1081
  • [46] Surface chemistry of protein-capped gold nanoparticles
    Schonrock, Zachary
    Bentley, Anne
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [47] Trapping and release of citrate-capped gold nanoparticles
    Reyes, Darwin R.
    Mijares, Geraldine I.
    Nablo, Brian
    Briggman, Kimberly A.
    Gaitan, Michael
    APPLIED SURFACE SCIENCE, 2011, 257 (20) : 8373 - 8377
  • [48] Agglomeration behavior of lipid-capped gold nanoparticles
    Rajeev Ranjan
    Maria A. Kirillova
    Elena N. Esimbekova
    Sergey M. Zharkov
    Valentina A. Kratasyuk
    Journal of Nanoparticle Research, 2018, 20
  • [49] Synthesis and characterization of sericin-capped gold nanoparticles
    Akturk, Omer
    Gok, Zehra Gun
    Das, Taylan Memik
    Erdemli, Ozge
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2018, 33 (02): : 649 - 657
  • [50] Photothermal properties of core-capped gold nanoparticles
    Hong Xin
    Wang Chen-Chen
    Liu Jiang-Tao
    Wang Xiao-Qiang
    Yin Xue-Jie
    ACTA PHYSICA SINICA, 2018, 67 (19)