Motional ground-state cooling of single atoms in state-dependent optical tweezers

被引:6
|
作者
Hoelzl, C. [1 ,2 ]
Goetzelmann, A. [1 ,2 ]
Wirth, M. [1 ,2 ]
Safronova, M. S. [3 ,4 ,5 ]
Weber, S. [2 ,6 ]
Meinert, F. [1 ,2 ]
机构
[1] Univ Stuttgart, Phys Inst, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Ctr Integrated Quantum Sci & Technol, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[3] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[4] Natl Inst Stand & Technol, Joint Quantum Inst, College Pk, MD 20742 USA
[5] Univ Maryland, College Pk, MD 20742 USA
[6] Univ Stuttgart, Inst Theoret Phys 3, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 03期
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1103/PhysRevResearch.5.033093
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Laser cooling of single atoms in optical tweezers is a prerequisite for neutral atom quantum computing and simulation. Resolved sideband cooling comprises a well-established method for efficient motional ground-state preparation, but typically requires careful cancellation of light shifts in so-called magic traps. Here, we study a novel laser cooling scheme which overcomes such constraints, and applies when the ground state of a narrow cooling transition is trapped stronger than the excited state. We demonstrate our scheme, which exploits sequential addressing of red sideband transitions via frequency chirping of the cooling light, at the example of 88Sr atoms and report ground-state populations compatible with recent experiments in magic tweezers. The scheme also induces light-assisted collisions, which are key to the assembly of large atom arrays. Our work enriches the toolbox for tweezer-based quantum technology, also enabling applications for tweezer-trapped molecules and ions that are incompatible with resolved sideband cooling conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Sideband ground-state cooling of graphene with Rydberg atoms via vacuum forces
    Khan, M. Miskeen
    Ribeiro, S.
    Mendonca, J. T.
    Tercas, H.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [22] Atoms trapped by a spin-dependent optical lattice potential: Realization of a ground-state quantum rotor
    Kuzmenko, Igor
    Kuzmenko, Tetyana
    Avishai, Y.
    Band, Y. B.
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [23] State-Dependent Energy Shifts of Rydberg Atoms in a Ponderomotive Optical Lattice
    Younge, K. C.
    Knuffman, B.
    Anderson, S. E.
    Raithel, G.
    PHYSICAL REVIEW LETTERS, 2010, 104 (17)
  • [24] Mechanical effects of optical resonators on driven trapped atoms: Ground-state cooling in a high-finesse cavity
    Zippilli, S
    Morigi, G
    PHYSICAL REVIEW A, 2005, 72 (05):
  • [25] A single laser system for ground-state cooling of 25Mg+
    Hemmerling, B.
    Gebert, F.
    Wan, Y.
    Nigg, D.
    Sherstov, I. V.
    Schmidt, P. O.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (03): : 583 - 590
  • [26] A single laser system for ground-state cooling of 25Mg+
    B. Hemmerling
    F. Gebert
    Y. Wan
    D. Nigg
    I. V. Sherstov
    P. O. Schmidt
    Applied Physics B, 2011, 104 : 583 - 590
  • [27] Laser cooling of thulium atoms to ground vibrational state in an optical lattice
    Provorchenko, D.I.
    Tregubov, D.O.
    Golovizin, A.A.
    Kolachevsky, N.N.
    Physics-Uspekhi, 2024, 67 (11) : 1119 - 1128
  • [28] Interaction Between Two Ground-State Atoms
    Zhengang Liang
    Wenting Zhou
    International Journal of Theoretical Physics, 2021, 60 : 2025 - 2036
  • [29] TEMPERATURE OF GROUND-STATE ATOMS FOR AN AFTERGLOW IN HELIUM
    BOUVIER, A
    BOUVIER, A
    MONTEIL, A
    SAMBA, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1975, 281 (23): : 587 - 590
  • [30] Ground-state bistability of cold atoms in a cavity
    Gabor, B.
    Nagy, D.
    Dombi, A.
    Clark, T. W.
    Williams, F. I. B.
    V. Adwaith, K.
    Vukics, A.
    Domokos, P.
    PHYSICAL REVIEW A, 2023, 107 (02)