Dynamic Weighting Network for Person Re-Identification

被引:2
|
作者
Li, Guang [1 ,2 ]
Liu, Peng [2 ,3 ]
Cao, Xiaofan [1 ,2 ]
Liu, Chunguang [2 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Yangzhong Intelligent Elect Res Ctr, Yangzhong 212211, Peoples R China
[3] Changchun Univ Sci & Technol, Sch Elect & Informat Engn, Changchun 130012, Peoples R China
关键词
re-identification; self-attention; fine-grained features;
D O I
10.3390/s23125579
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recently, hybrid Convolution-Transformer architectures have become popular due to their ability to capture both local and global image features and the advantage of lower computational cost over pure Transformer models. However, directly embedding a Transformer can result in the loss of convolution-based features, particularly fine-grained features. Therefore, using these architectures as the backbone of a re-identification task is not an effective approach. To address this challenge, we propose a feature fusion gate unit that dynamically adjusts the ratio of local and global features. The feature fusion gate unit fuses the convolution and self-attentive branches of the network with dynamic parameters based on the input information. This unit can be integrated into different layers or multiple residual blocks, which will have varying effects on the accuracy of the model. Using feature fusion gate units, we propose a simple and portable model called the dynamic weighting network or DWNet, which supports two backbones, ResNet and OSNet, called DWNet-R and DWNet-O, respectively. DWNet significantly improves re-identification performance over the original baseline, while maintaining reasonable computational consumption and number of parameters. Finally, our DWNet-R achieves an mAP of 87.53%, 79.18%, 50.03%, on the Market1501, DukeMTMC-reID, and MSMT17 datasets. Our DWNet-O achieves an mAP of 86.83%, 78.68%, 55.66%, on the Market1501, DukeMTMC-reID, and MSMT17 datasets.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Mixed granularity network for person re-identification
    Zhang, Fanlong
    Wu, Shuli
    Huang, Pu
    Yang, Zhangjing
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 275
  • [12] Resolution independent person re-identification network
    Zhang, Li
    Xu, Yunjie
    Zhao, Liaoying
    Qin, Feiwei
    IET COMPUTER VISION, 2022,
  • [13] Related Attention Network for Person Re-identification
    Liang, Jiali
    Zeng, Dan
    Chen, Shuaijun
    Tian, Qi
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 366 - 372
  • [14] Adaptive Alignment Network for Person Re-identification
    Zhu, Xierong
    Liu, Jiawei
    Xie, Hongtao
    Zha, Zheng-Jun
    MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 16 - 27
  • [15] Feature mask network for person re-identification
    Ding, Guodong
    Khan, Salman
    Tang, Zhenmin
    Porikli, Fatih
    PATTERN RECOGNITION LETTERS, 2020, 137 : 91 - 98
  • [16] Attribute saliency network for person re-identification
    Tay, Chiat-Pin
    Yap, Kim-Hui
    IMAGE AND VISION COMPUTING, 2021, 115
  • [17] Person Re-identification on Heterogeneous Camera Network
    Zhuo, Jiaxuan
    Zhu, Junyong
    Lai, Jianhuang
    Xie, Xiaohua
    COMPUTER VISION, PT III, 2017, 773 : 280 - 291
  • [18] Harmonious Attention Network for Person Re-Identification
    Li, Wei
    Zhu, Xiatian
    Gong, Shaogang
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2285 - 2294
  • [19] Dual Network Fusion for Person Re-Identification
    Du, Lin
    Tian, Chang
    Zeng, Mingyong
    Wang, Jiabao
    Jiao, Shanshan
    Shen, Qing
    Wu, Guodong
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (03) : 643 - 648
  • [20] Dynamic Attention Vision-Language Transformer Network for Person Re-identification
    Zhang, Guifang
    Tan, Shijun
    Ji, Zhe
    Fang, Yuming
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, : 1927 - 1939