Dynamic Weighting Network for Person Re-Identification

被引:2
|
作者
Li, Guang [1 ,2 ]
Liu, Peng [2 ,3 ]
Cao, Xiaofan [1 ,2 ]
Liu, Chunguang [2 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Yangzhong Intelligent Elect Res Ctr, Yangzhong 212211, Peoples R China
[3] Changchun Univ Sci & Technol, Sch Elect & Informat Engn, Changchun 130012, Peoples R China
关键词
re-identification; self-attention; fine-grained features;
D O I
10.3390/s23125579
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recently, hybrid Convolution-Transformer architectures have become popular due to their ability to capture both local and global image features and the advantage of lower computational cost over pure Transformer models. However, directly embedding a Transformer can result in the loss of convolution-based features, particularly fine-grained features. Therefore, using these architectures as the backbone of a re-identification task is not an effective approach. To address this challenge, we propose a feature fusion gate unit that dynamically adjusts the ratio of local and global features. The feature fusion gate unit fuses the convolution and self-attentive branches of the network with dynamic parameters based on the input information. This unit can be integrated into different layers or multiple residual blocks, which will have varying effects on the accuracy of the model. Using feature fusion gate units, we propose a simple and portable model called the dynamic weighting network or DWNet, which supports two backbones, ResNet and OSNet, called DWNet-R and DWNet-O, respectively. DWNet significantly improves re-identification performance over the original baseline, while maintaining reasonable computational consumption and number of parameters. Finally, our DWNet-R achieves an mAP of 87.53%, 79.18%, 50.03%, on the Market1501, DukeMTMC-reID, and MSMT17 datasets. Our DWNet-O achieves an mAP of 86.83%, 78.68%, 55.66%, on the Market1501, DukeMTMC-reID, and MSMT17 datasets.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Domain adaptive person re-identification with noise optimization and dynamic weighting
    Wang, Zhengyang
    Ye, Xiufen
    Shang, Xue
    Guo, Shuxiang
    APPLIED SOFT COMPUTING, 2025, 174
  • [2] Dynamic Re-Weighting and Cross-Camera Learning for Unsupervised Person Re-Identification
    Yin, Qingze
    Wang, Guan'an
    Wu, Jinlin
    Luo, Haonan
    Tang, Zhenmin
    MATHEMATICS, 2022, 10 (10)
  • [3] Grafted network for person re-identification
    Wang, Jiabao
    Li, Yang
    Jiao, Shanshan
    Miao, Zhuang
    Zhang, Rui
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 80
  • [4] Person Re-Identification by Siamese Network
    Shebiah, R. Newlin
    Arivazhagan, S.
    Amrith, S. G.
    Adarsh, S.
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2023, 26 (71): : 25 - 33
  • [5] Relation Network for Person Re-Identification
    Park, Hyunjong
    Ham, Bumsub
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11839 - 11847
  • [6] Person re-identification based on attention mechanism and adaptive weighting
    Wang, Yangping
    Li, Li
    Yang, Jingyu
    Dang, Jianwu
    DYNA, 2021, 96 (02): : 186 - 193
  • [7] Bidirectional Interaction Network for Person Re-Identification
    Chen, Xiumei
    Zheng, Xiangtao
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1935 - 1948
  • [8] Global Correlative Network for Person re-identification
    Xie, Gengsheng
    Wen, Xianbin
    Yuan, Liming
    Xu, Haixia
    Liu, Zhanlu
    NEUROCOMPUTING, 2022, 469 : 298 - 309
  • [9] CASCADE ATTENTION NETWORK FOR PERSON RE-IDENTIFICATION
    Guo, Haiyun
    Wu, Huiyao
    Zhao, Chaoyang
    Zhang, Huichen
    Wang, Jinqiao
    Lu, Hanqing
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2264 - 2268
  • [10] Adaptive receptive network for person re-identification
    Wang S.
    Ji P.
    Zhang Y.-Z.
    Zhu S.-D.
    Bao J.-N.
    Kongzhi yu Juece/Control and Decision, 2021, 37 (01): : 119 - 126