Photometric prioritization of neutron star merger candidates

被引:0
|
作者
Ofek, Eran O. [1 ]
Strotjohann, Nora L. [1 ]
Arcavi, Iair [2 ]
Gal-Yam, Avishay [1 ]
Kushnir, Doron [1 ]
Waxman, Eli [1 ]
Kasliwal, Mansi M. [3 ]
Drake, Andrew [3 ]
Graham, Matthew [3 ]
Purdum, Josiah [4 ]
Rusholme, Ben [5 ]
Sharma, Yashvi [6 ]
Smith, Roger [4 ]
Wold, Avery [6 ]
Healy, Brian F. [7 ]
机构
[1] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel
[2] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[3] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[4] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA
[5] CALTECH, IPAC, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[6] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA
[7] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
基金
以色列科学基金会; 美国国家科学基金会;
关键词
gravitational waves; methods: data analysis; methods: observational; methods: statistical; software: data analysis; stars: neutron; supernovae: general; ZWICKY TRANSIENT FACILITY; GRAVITATIONAL-WAVE SOURCE; ELECTROMAGNETIC COUNTERPART; CIRCUMSTELLAR MATERIAL; GW170817; KILONOVA; EMISSION; SKY; CONSTRAINTS; PROGENITOR; IDENTIFICATION;
D O I
10.1093/mnras/stad3380
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Rapid identification of the optical counterparts of neutron star (NS) merger events discovered by gravitational wave detectors may require observing a large error region and sifting through a large number of transients to identify the object of interest. Given the expense of spectroscopic observations, a question arises: How can we utilize photometric observations for candidate prioritization, and what kinds of photometric observations are needed to achieve this goal? NS merger kilonova exhibits low ejecta mass (similar to 5 x 10(-2)M(circle dot)) and a rapidly evolving photospheric radius (with a velocity similar to 0.2c). As a consequence, these sources display rapid optical-flux evolution. Indeed, selection based on fast flux variations is commonly used for young supernovae and NS mergers. In this study, we leverage the best currently available flux-limited transient survey - the Zwicky Transient Facility Bright Transient Survey - to extend and quantify this approach. We focus on selecting transients detected in a 3-day cadence survey and observed at a one-day cadence. We explore their distribution in the phase space defined by g-r, , and . Our analysis demonstrates that for a significant portion of the time during the first week, the kilonova AT2017gfo stands out in this phase space. It is important to note that this investigation is subject to various biases and challenges; nevertheless, it suggests that certain photometric observations can be leveraged to identify transients with the highest probability of being fast-evolving events. We also find that a large fraction (approximate to 75 percent) of the transient candidates with magd(-1), are cataclysmic variables or active galactic nuclei with radio counterparts.
引用
收藏
页码:3741 / 3748
页数:8
相关论文
共 50 条
  • [31] Are interactions with neutron star merger winds shaping the jets?
    Nativi, L.
    Lamb, G. P.
    Rosswog, S.
    Lundman, C.
    Kowal, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (01) : 903 - 913
  • [32] FRB 171019: an event of binary neutron star merger?
    Jiang, Jin-Chen
    Wang, Wei-Yang
    Luo, Rui
    Du, Shuang
    Chen, Xuelei
    Lee, Ke-Jia
    Xu, Ren-Xin
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2020, 20 (04)
  • [33] Machine Learning to Search for Accreting Neutron Star Binary Candidates Using Chinese Space Station Telescope Photometric System
    Lan, Shun-Yi
    Ji, Kai-Fan
    Meng, Xiang-Cun
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (12)
  • [34] Machine Learning to Search for Accreting Neutron Star Binary Candidates Using Chinese Space Station Telescope Photometric System
    Shun-Yi Lan
    Kai-Fan Ji
    Xiang-Cun Meng
    ResearchinAstronomyandAstrophysics, 2022, 22 (12) : 325 - 337
  • [35] Properties of the Binary Neutron Star Merger GW170817
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agarwal, B.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allen, G.
    Allocca, A.
    Aloy, M. A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S., V
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Atallah, D., V
    Aubin, F.
    Aufmuth, P.
    Aulbert, C.
    AultONeal, K.
    Austin, C.
    Avila-Alvarez, A.
    Babak, S.
    PHYSICAL REVIEW X, 2019, 9 (01):
  • [36] The Environment of the Binary Neutron Star Merger GW170817
    Levan, A. J.
    Lyman, J. D.
    Tanvir, N. R.
    Hjorth, J.
    Mandel, I.
    Stanway, E. R.
    Steeghs, D.
    Fruchter, A. S.
    Troja, E.
    Schroder, S. L.
    Wiersema, K.
    Bruun, S. H.
    Cano, Z.
    Cenko, S. B.
    de Ugarte Postigo, A.
    Evans, P.
    Fairhurst, S.
    Fox, O. D.
    Fynbo, J. P. U.
    Gompertz, B.
    Greiner, J.
    Im, M.
    Izzo, L.
    Jakobsson, P.
    Kangas, T.
    Khandrika, H. G.
    Lien, A. Y.
    Malesani, D.
    O'Brien, P.
    Osborne, J. P.
    Palazzi, E.
    Pian, E.
    Perley, D. A.
    Rosswog, S.
    Ryan, R. E.
    Schulze, S.
    Sutton, P.
    Thone, C. C.
    Watson, D. J.
    Wijers, R. A. M. J.
    ASTROPHYSICAL JOURNAL LETTERS, 2017, 848 (02)
  • [37] Neutrino transport in general relativistic neutron star merger simulations
    Francois Foucart
    Living Reviews in Computational Astrophysics, 9 (1)
  • [38] Bound Debris Expulsion from Neutron Star Merger Remnants
    Zenati, Yossef
    Krolik, Julian H.
    Werneck, Leonardo R.
    Murguia-Berthier, Ariadna
    Etienne, Zachariah B.
    Noble, Scott C.
    Piran, Tsvi
    ASTROPHYSICAL JOURNAL, 2023, 958 (02):
  • [39] On the Progenitor of Binary Neutron Star Merger GW170817
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Afrough, M.
    Agarwal, B.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allen, G.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S. V.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Atallah, D. V.
    Aufmuth, P.
    Aulbert, C.
    AultONeal, K.
    Austin, C.
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    ASTROPHYSICAL JOURNAL LETTERS, 2017, 850 (02)
  • [40] Constraining properties of neutron star merger outflows with radio observations
    Dobie D.
    Kaplan D.L.
    Hotokezaka K.
    Murphy T.
    Deller A.
    Hallinan G.
    Nissanke S.
    Monthly Notices of the Royal Astronomical Society, 2020, 494 (02): : 2449 - 2464