ANISOTROPIC DISCRETE BOUNDARY VALUE PROBLEMS

被引:1
|
作者
Hammouti, Omar [1 ]
Taarabti, Said [2 ]
Agarwal, Ravi P. [3 ]
机构
[1] Univ Moammed First, Dept Math, Oujda, Morocco
[2] Univ Ibn Zohr, Natl Sch Appl Sci Agadir, LISTI, Agadir, Morocco
[3] Texas A&M Univ, Dept Math, Kingsville, TX USA
关键词
Discrete nonlinear boundary value problems; Critical point theory; Nontrivial solution; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.2298/AADM220824008H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an anisotropic discrete nonlinear problem with variable exponent, we demonstrate both the existence and multiplicity of nontrivial solutions in this study. The variational principle and critical point theory are the key techniques employed here.
引用
收藏
页码:232 / 248
页数:17
相关论文
共 50 条
  • [11] DISCRETE POTENTIAL + BOUNDARY VALUE PROBLEMS
    SALTZER, C
    DUKE MATHEMATICAL JOURNAL, 1964, 31 (02) : 299 - &
  • [12] Singular discrete boundary value problems
    Agarwal, RP
    O'Regan, D
    APPLIED MATHEMATICS LETTERS, 1999, 12 (04) : 127 - 131
  • [13] Boundary value problems for discrete equations
    Agarwal, RP
    ORegan, D
    APPLIED MATHEMATICS LETTERS, 1997, 10 (04) : 83 - 89
  • [14] Nonpositone discrete boundary value problems
    Agarwal, RP
    O'Regan, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (02) : 207 - 215
  • [15] Discrete Equations, Discrete Transformations, and Discrete Boundary Value Problems
    Afanas'eva, E. B.
    Vasil'ev, V. B.
    Bongay, A. B. Kamanda
    DIFFERENTIAL EQUATIONS, 2023, 59 (12) : 1698 - 1707
  • [16] Boundary value problems for anisotropic elastic waves
    Roetman, E. L.
    Review of Progress in Quantitative Nondestructive Evaluation, Vols 26A and 26B, 2007, 894 : 1057 - 1064
  • [17] On an anisotropic discrete boundary value problem of Kirchhoff type
    Graef, John R.
    Heidarkhani, Shapour
    Kong, Lingju
    Moradi, Shahin
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (08) : 1103 - 1119
  • [18] Discrete Boundary Value Problems as Approximate Constructions
    A. V. Vasilyev
    V. B. Vasilyev
    O. A. Tarasova
    Lobachevskii Journal of Mathematics, 2022, 43 : 1446 - 1457
  • [19] Discrete Boundary Value Problems as Approximate Constructions
    Vasilyev, A. V.
    Vasilyev, V. B.
    Tarasova, O. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (06) : 1446 - 1457
  • [20] Multiplicity theorems for discrete boundary value problems
    Faraci F.
    Iannizzotto A.
    Aequationes mathematicae, 2007, 74 (1-2) : 111 - 118