Lanthanide Contraction Builds Better High-Voltage LiCoO2 Batteries

被引:47
|
作者
Xia, Jing [1 ,2 ]
Zhang, Na [3 ]
Yang, Yijun [4 ]
Chen, Xing [3 ]
Wang, Xi [4 ]
Pan, Feng [5 ]
Yao, Jiannian [6 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
[2] Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361102, Peoples R China
[3] Tianjin Univ, Inst Mol Plus, Tianjin 300072, Peoples R China
[4] Beijing Jiaotong Univ, Sch Phys Sci & Engn, Dept Phys, Beijing 100044, Peoples R China
[5] Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[6] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
cathode materials; doping; high-voltage LiCoO2; lanthanide contraction; lithium-ion batteries; LITHIUM ION BATTERIES; OXIDE; CAPACITY; ELEMENTS;
D O I
10.1002/adfm.202212869
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cycling lithium cobalt oxide (LiCoO2) to a potential higher than 4.35 V (vs Li+/Li) can obtain an enticing capacity, but suffers from inferior structural stability. Herein, an ingenious Li-deintercalation/doping strategy is developed to synthesize the lanthanide-doped LiCoO2 (lanthanide (Ln) = praseodymium, neodymium, samarium, europium, gadolinium, erbium, or lutetium) with Ln occupying Li-sites. Electrochemical measurements show that the cycling stability of Ln-doped LiCoO2 increases as the lanthanide contracts. By rule, lutetium-doped LiCoO2 exhibits the best cycling stability, confirmed in both lithium half-cell and pouch full-cell. Comprehensive experimental characterizations combining with theoretical calculations reveal that the lattice strain tuned by the lanthanide contraction plays a critical role in the structure stability of LiCoO2. This finding is an important step for building better high-voltage LiCoO2 batteries, as it is possible to achieve better high-voltage performance by combining the doping technology and performance improvement rule disclosed in this work.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] New Insight into Bulk Structural Degradation of High-Voltage LiCoO2 at 4.55 V
    Lin, Weiguang
    Su, Wei
    Lin, Ting
    Wang, Shiyu
    Chen, Jing
    Gao, Ang
    Lyu, Yingchun
    Xiao, Dongdong
    Zhang, Qinghua
    Gu, Lin
    NANO LETTERS, 2024, 24 (24) : 7150 - 7157
  • [42] An Effective Electrolyte Strategy To Improve the High-Voltage Performance of LiCoO2 Cathode Materials
    Kong, Xiangbang
    Zhou, Rong
    Wang, Jing
    Zhao, Jinbao
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (07) : 4683 - 4691
  • [43] Upcycling the spent graphite/LiCoO2 batteries for high-voltage graphite/LiCoPO4-co-workable dual-ion batteries
    Miao Du
    Hongyan Lü
    Kaidi Du
    Shuohang Zheng
    Xiaotong Wang
    Xiaotong Deng
    Ronghua Zeng
    Xinglong Wu
    InternationalJournalofMinerals,MetallurgyandMaterials, 2024, (07) : 1745 - 1751
  • [44] Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries
    Yang, Qi
    Huang, Jie
    Li, Yejing
    Wang, Yi
    Qiu, Jiliang
    Zhang, Jienan
    Yu, Huigen
    Yu, Xiqian
    Li, Hong
    Chen, Liquan
    JOURNAL OF POWER SOURCES, 2018, 388 : 65 - 70
  • [45] Upcycling the spent graphite/LiCoO2 batteries for high-voltage graphite/LiCoPO4-co-workable dual-ion batteries
    Du, Miao
    Lue, Hongyan
    Du, Kaidi
    Zheng, Shuohang
    Wang, Xiaotong
    Deng, Xiaotong
    Zeng, Ronghua
    Wu, Xinglong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (07) : 1745 - 1751
  • [46] Electrolyte regulating and interface engineering for high voltage LiCoO2 lithium metal batteries
    Qin, Daomin
    Cheng, Fangyuan
    Zhang, Wen
    Xu, Jia
    Sun, Shixiong
    Xu, Yue
    Fang, Chun
    Han, Jiantao
    APPLIED SURFACE SCIENCE, 2023, 616
  • [47] Polyimide gel polymer electrolyte-nanoencapsulated LiCoO2 cathode materials for high-voltage Li-ion batteries
    Park, Jang-Hoon
    Kim, Jong-Su
    Shim, Eun-Gi
    Park, Kyung-Won
    Hong, Young Taik
    Lee, Yun-Sung
    Lee, Sang-Young
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (08) : 1099 - 1102
  • [48] Vapor-assisted synthesis of Al2O3-coated LiCoO2 for high-voltage lithium ion batteries
    Zhao, Fei
    Tang, Yufeng
    Wang, Junsheng
    Tian, Jianliya
    Ge, Honghua
    Wang, Baofeng
    ELECTROCHIMICA ACTA, 2015, 174 : 384 - 390
  • [49] Nonflammable Electrolyte Based on Fluoroethylene Carbonate for High-Voltage LiCoO2/Si-Graphite Lithium-Ion Batteries
    Pan, Handong
    Gu, Yixuan
    Lyu, Tengxiao
    Wang, Zhipeng
    Wang, Guoyu
    Zhang, Yue
    Xue, Minzhao
    Fang, Shaohua
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (03) : 1955 - 1964
  • [50] Stabilizing electrode-electrolyte interfaces to realize high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte
    Xue, Weijiang
    Gao, Rui
    Shi, Zhe
    Xiao, Xianghui
    Zhang, Wenxu
    Zhang, Yirui
    Zhu, Yun Guang
    Waluyo, Iradwikanari
    Li, Yao
    Hill, Megan R.
    Zhu, Zhi
    Li, Sa
    Kuznetsov, Oleg
    Zhang, Yiman
    Lee, Wah-Keat
    Hunt, Adrian
    Harutyunyan, Avetik
    Shao-Horn, Yang
    Johnson, Jeremiah A.
    Li, Ju
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (11) : 6030 - 6040