Investigating the Hydroxyl Reorientation in Hydroxyapatite Using Machine Learning Potentials

被引:2
|
作者
Wang, Jing [1 ]
Wang, Xin [1 ]
Zhu, Hua [1 ]
Xu, Dingguo [1 ]
机构
[1] Sichuan Univ, Coll Chem, MOE Key Lab Green Chem & Technol, Chengdu 610064, Sichuan, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 23期
基金
中国国家自然科学基金;
关键词
PHASE-TRANSITION; PROTON-TRANSFER; FLIP-FLOP; ENERGY; SIMULATION;
D O I
10.1021/acs.jpcc.3c02426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The chain or network of hydroxylgroups (OH-)is crucial in determining the structure and function of materials,especially in hydroxyapatite (HAP), a mineral essential for humanbones. HAP exhibits a linear arrangement of OH- alongthe c-axis, which determines its phase transition,dielectric, and piezoelectric properties. However, the mechanism underlyingOH(-) reorientation with temperature remains elusiveusing traditional experimental and theoretical methods. To addressthis, we developed a machine learning atomistic potential for HAPusing an active learning algorithm, which achieved density functionaltheory-level accuracy in describing OH- of HAP.The machine learning molecular dynamics simulations revealed thatthe reorientation of OH- in HAP with temperatureoccurs through '' flip-flop '' motion, rather than protontransfer. This process starts at about 473 K and accelerates withincreasing temperature, consistent with the experimentally observedtransformation from the monoclinic to hexagonal phase. At 973 K andabove, the rapid "flip-flop" reorientation process leadsto an undetermined orientation of OH- along the c-axis. These findings highlight the potential of machinelearning-accelerated molecular dynamics simulations in unravelingthe microscopic mechanisms underlying the hydrogen bond network incomplex multicomponent materials at the atomic level.
引用
收藏
页码:11369 / 11377
页数:9
相关论文
共 50 条
  • [31] Investigating Citation Linkage with Machine Learning
    Houngbo, Hospice
    Mercer, Robert E.
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CANADIAN AI 2017, 2017, 10233 : 78 - 83
  • [32] A machine learning methodology for the generation of a parameterization of the hydroxyl radical
    Anderson, Daniel C.
    Follette-Cook, Melanie B.
    Strode, Sarah A.
    Nicely, Julie M.
    Liu, Junhua
    Ivatt, Peter D.
    Duncan, Bryan N.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2022, 15 (16) : 6341 - 6358
  • [33] Exploring the Polymorphism of Dicalcium Silicates Using Transfer Learning Enhanced Machine Learning Atomic Potentials
    Lopez-Zorrilla, Jon
    Aretxabaleta, Xabier M.
    Manzano, Hegoi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (17) : 7682 - 7690
  • [34] A machine learning approach for distinguishing age of infants using auditory evoked potentials
    Ravan, Maryam
    Reilly, James P.
    Trainor, Laurel J.
    Khodayari-Rostamabad, Ahmad
    CLINICAL NEUROPHYSIOLOGY, 2011, 122 (11) : 2139 - 2150
  • [35] Using Machine Learning Potentials to Explore Interdiffusion at Metal-Chalcogenide Interfaces
    Achar, Siddarth K.
    Schneider, Julian
    Stewart, Derek A.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (51) : 56963 - 56974
  • [36] Estimation of Potentials in Lithium-Ion Batteries Using Machine Learning Models
    Li, Weihan
    Limoge, Damas W.
    Zhang, Jiawei
    Sauer, Dirk Uwe
    Annaswamy, Anuradha M.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (02) : 680 - 695
  • [37] Investigating Superficial White Matter Integrity in Early MS Using Machine Learning
    Korhan, Buyukturkoglu
    Vergara, Christopher
    Fuentealba, Valentina
    Tozlu, Ceren
    Dahan, Jacob B.
    Carroll, Britta E.
    Oliva, Carlos Guevara
    Kuceyeski, Amy
    Sumowski, James F.
    Sitaram, Ranganatha
    Guevara, Pamela
    Leavitt, Victoria
    NEUROLOGY, 2021, 96 (15)
  • [38] Investigating pharmacokinetic profiles of Centella asiatica using machine learning and PBPK modelling
    Pumkathin, Siriwan
    Hanlumyuang, Yuranan
    Wattanathana, Worawat
    Laomettachit, Teeraphan
    Liangruksa, Monrudee
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2024,
  • [39] Investigating Novice Developers' Code Commenting Trends Using Machine Learning Techniques
    Niazi, Tahira
    Das, Teerath
    Ahmed, Ghufran
    Waqas, Syed Muhammad
    Khan, Sumra
    Khan, Suleman
    Abdelatif, Ahmed Abdelaziz
    Wasi, Shaukat
    ALGORITHMS, 2023, 16 (01)
  • [40] Investigating hermetic reciprocating compressor performance by using various machine learning methods
    Bacak, Aykut
    Colak, Andac Batur
    Dalkilic, Ahmet Selim
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (11) : 5369 - 5384