Over 31% efficient indoor organic photovoltaics enabled by simultaneously reduced trap-assisted recombination and non-radiative recombination voltage loss

被引:27
|
作者
Zhou, Xiaobo [1 ]
Wu, Hongbo [2 ]
Bothra, Urvashi [3 ]
Chen, Xingze [4 ]
Lu, Guanyu [5 ]
Zhao, Heng [1 ]
Zhao, Chao [1 ]
Luo, Qun [4 ]
Lu, Guanghao [5 ]
Zhou, Ke [1 ]
Kabra, Dinesh [3 ]
Ma, Zaifei [2 ]
Ma, Wei [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Donghua Univ, Ctr Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Adv Low Dimens Mat, Shanghai 201620, Peoples R China
[3] Indian Inst Technol, Dept Phys, Mumbai 400076, India
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob, I Lab & Printable Elect Res Ctr, Suzhou 215123, Peoples R China
[5] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710054, Peoples R China
关键词
POLYMER SOLAR-CELLS; PERFORMANCE; POLYMER/FULLERENE; IMPACT;
D O I
10.1039/d2mh01229d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Indoor organic photovoltaics (OPVs) have shown great potential application in driving low-energy-consumption electronics for the Internet of Things. There is still great room for further improving the power conversion efficiency (PCE) of indoor OPVs, considering that the desired morphology of the active layer to reduce trap-assisted recombination and voltage losses and thus simultaneously enhance the fill factor (FF) and open-circuit voltage for efficient indoor OPVs remains obscure. Herein, by optimizing the bulk and interface morphology via a layer-by-layer (LBL) processing strategy, low leakage current and low non-radiative recombination loss can be synergistically achieved in PM6:Y6-O based devices. Detailed characterizations reveal the stronger crystallinity, purer domains and ideal interfacial contacts in the LBL devices compared to their bulk-heterojunction (BHJ) counterparts. The optimized morphology yields a reduced voltage loss and an impressive FF of 81.5%, and thus contributes to a high PCE of 31.2% under a 1000 lux light-emitting diode (LED) illumination in the LBL devices, which is the best reported efficiency for indoor OPVs. Additionally, this LBL strategy exhibits great universality in promoting the performance of indoor OPVs, as exemplified by three other non-fullerene acceptor systems. This work provides guidelines for morphology optimization and synergistically promotes the fast development of efficient indoor OPVs.
引用
收藏
页码:566 / 575
页数:10
相关论文
共 41 条
  • [41] A minimal non- radiative recombination loss for efficient non- fullerene all- small- molecule organic solar cells with a low energy loss of 0.54 eV and high open- circuit voltage of 1.15 V+
    Yang, Daobin
    Wang, Yuming
    Sano, Takeshi
    Gao, Feng
    Sasabe, Hisahiro
    Kido, Junji
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (28) : 13918 - 13924