Electrical Treeing of SiR and SiR/Fe3O4 Nanocomposites in High Magnetic Field

被引:0
|
作者
Wang, Mingyang [1 ]
Yin, Xuegong [1 ]
Liu, Yuhao [1 ]
Du, Boxue [2 ]
Xue, Congzhao [1 ]
机构
[1] State Grid Tianjin High Voltage Co, Tianjin 300000, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300000, Peoples R China
关键词
Magnetic fields; Insulation; Iron; Electrodes; Nanoparticles; Superconducting magnets; Nanocomposites; Magnetic field; electrical tree; nanocomposites; quantum dot;
D O I
10.1109/ACCESS.2023.3280051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the effects of high magnetic field on electrical treeing of silicone rubber (SiR). Experimental results show that electrical trees are more easily to be initiated and spread further along the direction of electric field under the effects of high magnetic field. When the direction of high magnetic field is perpendicular to that of electric field, magnetic field with higher magnetic flux density also results in larger accumulated damage area. Splitting of energy band structure and changes in polarization characteristics result in a lower interface barrier and more serious partial discharge, thus causing the weakened resistance to electrical treeing in high magnetic field. Based on the insulation degradation mechanism, SiR was modified by adding ferroferric oxide (Fe3O4) nanoparticles to improve its insulation performance in high magnetic field. Moderate addition amount of Fe3O4 nanoparticles is proved to be able to suppress electrical treeing in high magnetic field by forming quantum dots, modifying polarization properties and partial discharge behavior. Excessive addition of Fe3O4 nanoparticles has negative effects on suppressing electrical treeing due to the magnetization of the nanocomposites.
引用
收藏
页码:52614 / 52621
页数:8
相关论文
共 50 条
  • [21] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
    Du, Meng
    Cao, Xing-Zhong
    Xia, Rui
    Zhou, Zhong-Po
    Jin, Shuo-Xue
    Wang, Bao-Yi
    CHINESE PHYSICS B, 2018, 27 (02)
  • [22] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
    杜萌
    曹兴忠
    夏锐
    周忠坡
    靳硕学
    王宝义
    Chinese Physics B, 2018, 27 (02) : 585 - 591
  • [23] Effect of Cysteine Substitutions on the Structural and Magnetic Properties of Fe3O4–Cysteine/RGO and Fe3O4/RGO–Cysteine Nanocomposites
    Hajar Sahebalzamani
    Kheirollah Mehrani
    Hamid Reza Madaah Hosseini
    Karim Zare
    Journal of Superconductivity and Novel Magnetism, 2019, 32 : 1299 - 1306
  • [24] PLLA- Fe3O4 Nanocomposites
    Albano, Carmen
    Gonzalez, Gema
    Naranjo, Claudio
    6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES, 2012, 1459 : 238 - 240
  • [25] IN SITU POLYMERIZATION OF FE3O4/POLYURETHANE NANOCOMPOSITES WITH HIGH PERFORMANCE
    Yao, Junru
    Hou, Chunling
    Yu, Hailin
    Sun, Youyi
    Gao, Li
    Liu, Yaqing
    RUBBER CHEMISTRY AND TECHNOLOGY, 2016, 89 (04): : 573 - 587
  • [26] Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds
    Ya Tuo
    Guangfei Liu
    Bin Dong
    Jiti Zhou
    Aijie Wang
    Jing Wang
    Ruofei Jin
    Hong Lv
    Zeou Dou
    Wenyu Huang
    Scientific Reports, 5
  • [27] Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds
    Ya, Tuo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [28] Synthesis and magnetic properties of Pt3Co/Fe3O4 nanocomposites
    Dai, Jingtao
    Wang, Ying
    Du, Yukou
    Yang, Ping
    Di, Guoqing
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2008, 29 (02) : 205 - 208
  • [29] Preparation and characterization of magnetic Fe3O4/CRGO nanocomposites for enzyme immobilization
    Wu Xiao-chen
    Zhang Yan
    Wu Cong-yu
    Wu Hai-xia
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2012, 22 : S162 - S168
  • [30] Preparation and evaluation of multifunctional Fe3O4/ZnS magnetic fluorescent nanocomposites
    Zhang, Xin
    Li, Yansong
    Wei, Yuping
    Jiao, Pengfei
    Chen, Weijie
    Wang, Peng
    MATERIALS EXPRESS, 2019, 9 (07) : 808 - 812