Machine learning for fault diagnosis of high-speed train traction systems: A review

被引:6
|
作者
Wang, Huan [1 ]
Li, Yan-Fu [1 ]
Ren, Jianliang [2 ]
机构
[1] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
[2] Zhibo Lucchini Railway Equipment Co Ltd, Taiyuan 030032, Peoples R China
基金
中国国家自然科学基金;
关键词
high-speed train; traction systems; machine learning; fault diagnosis; DISSOLVED-GAS ANALYSIS; DATA-DRIVEN METHOD; PANTOGRAPH-CATENARY; ARC DETECTION; ROTATING MACHINERY; COMPONENT ANALYSIS; WOLF OPTIMIZER; TRANSFORMER; MOTOR; CIRCUIT;
D O I
10.1007/s42524-023-0256-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-speed trains (HSTs) have the advantages of comfort, efficiency, and convenience and have gradually become the mainstream means of transportation. As the operating scale of HSTs continues to increase, ensuring their safety and reliability has become more imperative. As the core component of HST, the reliability of the traction system has a substantially influence on the train. During the long-term operation of HSTs, the core components of the traction system will inevitably experience different degrees of performance degradation and cause various failures, thus threatening the running safety of the train. Therefore, performing fault monitoring and diagnosis on the traction system of the HST is necessary. In recent years, machine learning has been widely used in various pattern recognition tasks and has demonstrated an excellent performance in traction system fault diagnosis. Machine learning has made considerably advancements in traction system fault diagnosis; however, a comprehensive systematic review is still lacking in this field. This paper primarily aims to review the research and application of machine learning in the field of traction system fault diagnosis and assumes the future development blueprint. First, the structure and function of the HST traction system are briefly introduced. Then, the research and application of machine learning in traction system fault diagnosis are comprehensively and systematically reviewed. Finally, the challenges for accurate fault diagnosis under actual operating conditions are revealed, and the future research trends of machine learning in traction systems are discussed.
引用
收藏
页码:62 / 78
页数:17
相关论文
共 50 条
  • [41] Convolutional Neural Network for Fault Diagnosis of High-Speed Train Bogie
    Huang, Changhe
    Qin, Na
    Huang, Deqing
    Liang, Kaiwei
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4937 - 4941
  • [42] A Platform for Fault Diagnosis of High-Speed Train based on Big Data
    Xu, Quan
    Zhang, Peng
    Liu, Wenqin
    Liu, Qiang
    Liu, Changxin
    Wang, Liangyong
    Toprac, Anthony
    Qin, S. Joe
    IFAC PAPERSONLINE, 2018, 51 (18): : 309 - 314
  • [43] GraphFL: Graph Federated Learning for Fault Localization of Multirailway High-Speed Train Suspension Systems
    Jia, Xinming
    Qin, Na
    Huang, Deqing
    Du, Jiahao
    Zhang, Yiming
    IEEE Transactions on Instrumentation and Measurement, 2024, 73
  • [44] Optimization analysis on high-speed train traction performance
    Locomotive and Vehicle Department, The Third Railway Survey and Design Institute Group Corporation, Tianjin 300251, China
    不详
    Tiedao Xuebao, 5 (14-18):
  • [45] Methods for fault diagnosis of high-speed railways: A review
    Zang, Yu
    Wei Shangguan
    Cai, Baigen
    Wang, Huashen
    Pecht, Michael G.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2019, 233 (05) : 908 - 922
  • [46] Data-Driven Fault Diagnosis for Traction Systems in High-Speed Trains: A Survey, Challenges, and Perspectives
    Chen, Hongtian
    Jiang, Bin
    Ding, Steven X.
    Huang, Biao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) : 1700 - 1716
  • [47] Early fault diagnosis strategy for high-speed train suspension systems based on model-agnostic meta-learning
    Yang, Funing
    Liu, Jikai
    Hua, Chunrong
    Liu, Weiqun
    Dong, Dawei
    VEHICLE SYSTEM DYNAMICS, 2024, 62 (10) : 2510 - 2532
  • [48] Convolutional Recurrent Neural Network for Fault Diagnosis of High-Speed Train Bogie
    Liang, Kaiwei
    Qin, Na
    Huang, Deqing
    Fu, Yuanzhe
    COMPLEXITY, 2018,
  • [49] Fault Diagnosis of High-Speed Train Bogie Based on Synchrony Group Convolutions
    Wu, Yunpu
    Jin, Weidong
    Ren, Junxiao
    Sun, Zhang
    SHOCK AND VIBRATION, 2019, 2019
  • [50] Fault Diagnosis of High-speed Train Bogie Based on Deep Neural Network
    Zhang, Yuanjie
    Qin, Na
    Huang, Deqing
    Liang, Kaiwei
    IFAC PAPERSONLINE, 2019, 52 (24): : 135 - 139