Reduced Deep Convection and Bottom Water Formation Due To Antarctic Meltwater in a Multi-Model Ensemble

被引:6
|
作者
Chen, Jia-Jia [1 ,2 ]
Swart, Neil C. [3 ]
Beadling, Rebecca [4 ]
Cheng, Xuhua [1 ]
Hattermann, Tore [5 ]
Juling, Andre [6 ]
Li, Qian [7 ]
Marshall, John [7 ,8 ]
Martin, Torge [9 ]
Muilwijk, Morven [5 ]
Pauling, Andrew G. [10 ]
Purich, Ariaan [11 ]
Smith, Inga J. [10 ]
Thomas, Max [10 ]
机构
[1] Hohai Univ, Coll Oceanog, Nanjing, Peoples R China
[2] Univ Victoria, Victoria, BC, Canada
[3] Canadian Ctr Climate Modelling & Anal, Environm & Climate Change Canada, Victoria, BC, Canada
[4] Temple Univ, Earth & Environm Sci Dept, Philadelphia, PA USA
[5] Norwegian Polar Res Inst, Fram Ctr, Tromso, Norway
[6] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands
[7] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA
[8] NASA Goddard Inst Space Studies, New York, NY USA
[9] GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany
[10] Univ Otago, Dept Phys, Dunedin, New Zealand
[11] Monash Univ, Sch Earth Atmosphere & Environm, ARC Special Res Initiat Securing Antarct Environm, Melbourne, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Antarctic meltwater additions; Southern Ocean; Antarctic bottom water; deep convection; climate models; SEA-LEVEL RISE; EARTH SYSTEM MODEL; SOUTHERN-OCEAN; ICE SHELVES; FRESH-WATER; GLOBAL HEAT; ABYSSAL; SLOWDOWN; POLYNYAS;
D O I
10.1029/2023GL106492
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The additional water from the Antarctic ice sheet and ice shelves due to climate-induced melt can impact ocean circulation and global climate. However, the major processes driving melt are not adequately represented in Coupled Model Intercomparison Project phase 6 (CMIP6) models. Here, we analyze a novel multi-model ensemble of CMIP6 models with consistent meltwater addition to examine the robustness of the modeled response to meltwater, which has not been possible in previous single-model studies. Antarctic meltwater addition induces a substantial weakening of open-ocean deep convection. Additionally, Antarctic Bottom Water warms, its volume contracts, and the sea surface cools. However, the magnitude of the reduction varies greatly across models, with differing anomalies correlated with their respective mean-state climatology, indicating the state-dependency of the climate response to meltwater. A better representation of the Southern Ocean mean state is necessary for narrowing the inter-model spread of response to Antarctic meltwater. The melting of the Antarctic ice sheet and ice shelves can have significant impacts on ocean circulation and thermal structure, but current climate models do not fully capture these effects. In this study, we analyze seven climate models to understand how they respond to the addition of meltwater from Antarctica. We find that the presence of Antarctic meltwater leads to a significant weakening of deep convection in the open ocean. The meltwater also causes Antarctic Bottom Water to warm and its volume to decrease, while the sea surface cools and sea ice expands. However, the magnitude of the response to meltwater varies across models, suggesting that the mean-state conditions of the Southern Ocean play a role. A better representation of the mean state and the inclusion of Antarctic meltwater in climate models will help reduce uncertainties and improve our understanding of the impact of Antarctic meltwater on climate. Antarctic meltwater substantially reduces the strength of simulated Southern Ocean deep convection in climate modelsThe additional meltwater induces Antarctic Bottom Water warming and contraction, with dense water classes converting to lighter onesDifferences in the magnitude of these responses between models can be partly attributed to their different base states
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean
    Erika Coppola
    Stefan Sobolowski
    E. Pichelli
    F. Raffaele
    B. Ahrens
    I. Anders
    N. Ban
    S. Bastin
    M. Belda
    D. Belusic
    A. Caldas-Alvarez
    R. M. Cardoso
    S. Davolio
    A. Dobler
    J. Fernandez
    L. Fita
    Q. Fumiere
    F. Giorgi
    K. Goergen
    I. Güttler
    T. Halenka
    D. Heinzeller
    Ø. Hodnebrog
    D. Jacob
    S. Kartsios
    E. Katragkou
    E. Kendon
    S. Khodayar
    H. Kunstmann
    S. Knist
    A. Lavín-Gullón
    P. Lind
    T. Lorenz
    D. Maraun
    L. Marelle
    E. van Meijgaard
    J. Milovac
    G. Myhre
    H.-J. Panitz
    M. Piazza
    M. Raffa
    T. Raub
    B. Rockel
    C. Schär
    K. Sieck
    P. M. M. Soares
    S. Somot
    L. Srnec
    P. Stocchi
    M. H. Tölle
    Climate Dynamics, 2020, 55 : 3 - 34
  • [32] A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean
    Coppola, Erika
    Sobolowski, Stefan
    Pichelli, E.
    Raffaele, F.
    Ahrens, B.
    Anders, I
    Ban, N.
    Bastin, S.
    Belda, M.
    Belusic, D.
    Caldas-Alvarez, A.
    Cardoso, R. M.
    Davolio, S.
    Dobler, A.
    Fernandez, J.
    Fita, L.
    Fumiere, Q.
    Giorgi, F.
    Goergen, K.
    Guttler, I
    Halenka, T.
    Heinzeller, D.
    Hodnebrog, O.
    Jacob, D.
    Kartsios, S.
    Katragkou, E.
    Kendon, E.
    Khodayar, S.
    Kunstmann, H.
    Knist, S.
    Lavin-Gullon, A.
    Lind, P.
    Lorenz, T.
    Maraun, D.
    Marelle, L.
    van Meijgaard, E.
    Milovac, J.
    Myhre, G.
    Panitz, H-J
    Piazza, M.
    Raffa, M.
    Raub, T.
    Rockel, B.
    Schaer, C.
    Sieck, K.
    Soares, P. M. M.
    Somot, S.
    Srnec, L.
    Stocchi, P.
    Toelle, M. H.
    CLIMATE DYNAMICS, 2020, 55 (1-2) : 3 - 34
  • [33] Changes in photovoltaic power output variability due to climate change in China: A multi-model ensemble mean analysis
    Zuo, Hui-Min
    Lu, Hou-Liang
    Sun, Peng
    Qiu, Jun
    Li, Fang-Fang
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2024, 16 (02)
  • [34] ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
    Seroussi, Helene
    Nowicki, Sophie
    Payne, Antony J.
    Goelzer, Heiko
    Lipscomb, William H.
    Abe-Ouchi, Ayako
    Agosta, Cecile
    Albrecht, Torsten
    Asay-Davis, Xylar
    Barthel, Alice
    Calov, Reinhard
    Cullather, Richard
    Dumas, Christophe
    Galton-Fenzi, Benjamin K.
    Gladstone, Rupert
    Golledge, Nicholas R.
    Gregory, Jonathan M.
    Greve, Ralf
    Hattermann, Tore
    Hoffman, Matthew J.
    Humbert, Angelika
    Huybrechts, Philippe
    Jourdain, Nicolas C.
    Kleiner, Thomas
    Larour, Eric
    Leguy, Gunter R.
    Lowry, Daniel P.
    Little, Chistopher M.
    Morlighem, Mathieu
    Pattyn, Frank
    Pelle, Tyler
    Price, Stephen F.
    Quiquet, Aurelien
    Reese, Ronja
    Schlegel, Nicole-Jeanne
    Shepherd, Andrew
    Simon, Erika
    Smith, Robin S.
    Straneo, Fiammetta
    Sun, Sainan
    Trusel, Luke D.
    Van Breedam, Jonas
    van de Wal, Roderik S. W.
    Winkelmann, Ricarda
    Zhao, Chen
    Zhang, Tong
    Zwinger, Thomas
    CRYOSPHERE, 2020, 14 (09): : 3033 - 3070
  • [35] Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging
    Multsch, S.
    Exbrayat, J. -F.
    Kirby, M.
    Viney, N. R.
    Frede, H. -G.
    Breuer, L.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (04) : 1233 - 1244
  • [36] New model and field data on estimates of Antarctic Bottom Water flow through the deep Vema Channel
    D. I. Frey
    V. V. Fomin
    N. A. Diansky
    E. G. Morozov
    V. G. Neiman
    Doklady Earth Sciences, 2017, 474 : 561 - 564
  • [37] New model and field data on estimates of Antarctic Bottom Water flow through the deep Vema Channel
    Frey, D. I.
    Fomin, V. V.
    Diansky, N. A.
    Morozov, E. G.
    Neiman, V. G.
    DOKLADY EARTH SCIENCES, 2017, 474 (01) : 561 - 564
  • [38] Retraction Note: A novel deep learning-based multi-model ensemble method for the prediction of neuromuscular disorders
    Aditya Khamparia
    Aman Singh
    Divya Anand
    Deepak Gupta
    Ashish Khanna
    N. Arun Kumar
    Joseph Tan
    Neural Computing and Applications, 2024, 36 (24) : 15205 - 15205
  • [39] Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images
    Wang Z.
    Dong J.
    Zhang J.
    Journal of Shanghai Jiaotong University (Science), 2022, 27 (01): : 70 - 80
  • [40] Satellite-Based Prediction of Arctic Sea Ice Concentration Using a Deep Neural Network with Multi-Model Ensemble
    Kim, Jiwon
    Kim, Kwangjin
    Cho, Jaeil
    Kang, Yong Q.
    Yoon, Hong-Joo
    Lee, Yang-Won
    REMOTE SENSING, 2019, 11 (01)