MACC-SRAM: A Multistep Accumulation Capacitor-Coupling In-Memory Computing SRAM Macro for Deep Convolutional Neural Networks

被引:1
|
作者
Zhang, Bo [1 ]
Saikia, Jyotishman [2 ]
Meng, Jian [3 ]
Wang, Dewei [1 ]
Kwon, Soonwan [4 ]
Myung, Sungmeen [4 ]
Kim, Hyunsoo [4 ]
Kim, Sang Joon [4 ]
Seo, Jae-Sun [3 ]
Seok, Mingoo [1 ]
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[3] Cornell Tech, Sch Elect & Comp Engn, New York, NY 10044 USA
[4] Samsung Elect, Samsung Adv Inst Technol, Suwon 16678, Gyeonggi Do, South Korea
关键词
Capacitive coupling computing; in-memory computing (IMC); sparsity-optimized deep convolutional neural network (DNN); stepwise-charging and discharging input driver (SCD-IDR);
D O I
10.1109/JSSC.2023.3332017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents multistep accumulation capacitor coupling static random-access memory (MACC-SRAM), capacitor-based in-memory computing (IMC) SRAM macro for 4-b deep convolutional neural network (DNN) inference. The macro can simultaneously activate all its 128 $\times$ 128 custom 9T1C bitcells to perform the vector-matrix multiplication (VMM). MACC-SRAM also integrates 128 stepwise-charging and discharging input drivers (SCD-IDRs) to efficiently convert the digital codes of the input activations into analog voltages in a 2-b serial fashion. As a result, it can save up to 66% of the capacitor-driving energy. Also, the macro adopts an adder-first architecture to reduce the analog-to-digital (A/D) conversion overhead for the analog-mixed-signal (AMS) computation. The partial sums of the four adjacent rows, representing different bit positions in the 4-b weights, are first accumulated with an analog switched-capacitor adder and then converted to digital codes by a 6-bit successive approximation register (SAR) analog-to-digital converter (ADC). Compared with the ADC-first architecture, where partial sums of each row are first converted to digital codes and then accumulated in the digital domain, the adder-first architecture can save 60.7% of the area and 66.7% of the energy consumption of the A/D conversion. Moreover, the co-optimization of the DNN model by increasing the sparsity further reduces 39.4% of the capacitor-driving energy with a neglectable 0.4% DNN accuracy loss. We prototyped the macro in 28 nm technology, and the measurement shows an energy efficiency of 163 tera-operations per second per watt (TOPS/W) and a throughput of 211 giga-operations per second (GOPS) for a 4-b/4-b DNN model under 0.9 V supply, among the highest of the recent IMC SRAMs.
引用
收藏
页码:1938 / 1949
页数:12
相关论文
共 50 条
  • [1] XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks
    Jiang, Zhewei
    Yin, Shihui
    Seok, Mingoo
    Seo, Jae-sun
    [J]. 2018 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2018, : 173 - 174
  • [2] XNOR-SRAM: In-Memory Computing SRAM Macro for Binary/Ternary Deep Neural Networks
    Yin, Shihui
    Jiang, Zhewei
    Seo, Jae-Sun
    Seok, Mingoo
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (06) : 1733 - 1743
  • [3] An In-Memory Computing SRAM Macro for Memory-Augmented Neural Network
    Kim, Sunghoon
    Lee, Wonjae
    Kim, Sundo
    Park, Sungjin
    Jeon, Dongsuk
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (03) : 1687 - 1691
  • [4] Design of In-Memory Computing Enabled SRAM Macro
    Monga, Kanika
    Behera, Sunit
    Chaturvedi, Nitin
    Gurunarayanan, S.
    [J]. 2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [5] TD-SRAM: Time-Domain-Based In-Memory Computing Macro for Binary Neural Networks
    Song, Jiahao
    Wang, Yuan
    Guo, Minguang
    Ji, Xiang
    Cheng, Kaili
    Hu, Yixuan
    Tang, Xiyuan
    Wang, Runsheng
    Huang, Ru
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (08) : 3377 - 3387
  • [6] Deep In-Memory Architectures in SRAM: An Analog Approach to Approximate Computing
    Kang, Mingu
    Gonugondla, Sujan K.
    Shanbhag, Naresh R.
    [J]. PROCEEDINGS OF THE IEEE, 2020, 108 (12) : 2251 - 2275
  • [7] C3SRAM: In-Memory-Computing SRAM Macro Based on Capacitive-Coupling Computing
    Jiang, Zhewei
    Yin, Shihui
    Seo, Jae-Sun
    Seok, Mingoo
    [J]. IEEE SOLID-STATE CIRCUITS LETTERS, 2019, 2 (09): : 131 - 134
  • [8] C3SRAM: In-Memory-Computing SRAM Macro Based on Capacitive-Coupling Computing
    Jiang, Zhewei
    Yin, Shihui
    Seo, Jae-Sun
    Seok, Mingoo
    [J]. IEEE 45TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2019), 2019, : 131 - +
  • [9] C3SRAM: An In-Memory-Computing SRAM Macro Based on Robust Capacitive Coupling Computing Mechanism
    Jiang, Zhewei
    Yin, Shihui
    Seo, Jae-Sun
    Seok, Mingoo
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (07) : 1888 - 1897
  • [10] CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-Product Computation for Low-Power Convolutional Neural Networks
    Biswas, Avishek
    Chandrakasan, Anantha P.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) : 217 - 230