Adaptive Hard Parameter Sharing Method Based on Multi-Task Deep Learning

被引:1
|
作者
Wang, Hongxia [1 ]
Jin, Xiao [1 ]
Du, Yukun [1 ]
Zhang, Nan [1 ]
Hao, Hongxia [1 ]
机构
[1] Nanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
关键词
multi-task learning; continuous gradient difference threshold; warm-up; training iteration threshold; information sharing; adaptive nodes; NEURAL-NETWORK; MODEL;
D O I
10.3390/math11224639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multi-task learning (MTL) improves the performance achieved on each task by exploiting the relevant information between tasks. At present, most of the mainstream deep MTL models are based on hard parameter sharing mechanisms, which can reduce the risk of model overfitting. However, negative knowledge transfer may occur, which hinders the performance improvement achieved for each task. In this paper, for situations when multiple tasks are jointly trained, we propose the adaptive hard parameter sharing method. On the basis of the adaptive hard parameter sharing method, the number of nodes in the network is dynamically updated by setting a continuous gradient difference-based sign threshold and a warm-up training iteration threshold through the relationships between the parameters and the loss function. After each task fully utilizes the shared information, adaptive nodes are used to further optimize each task, reducing the impact of negative migration. By using simulation studies and instance analyses, we demonstrate theoretical proof that the performance of the proposed method is better than that of the competing method.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Multi-task deep representation learning method for electronic health records
    Yang, Shan
    Zheng, Xiangwei
    Chen, Xuanchi
    Wei, Yi
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1188 - 1192
  • [22] Multi-task Learning for Deep Semantic Hashing
    Ma, Lei
    Li, Hongliang
    Wu, Qingbo
    Shang, Chao
    Ngan, Kingngi
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [23] Attentive Multi-task Deep Reinforcement Learning
    Bram, Timo
    Brunner, Gino
    Richter, Oliver
    Wattenhofer, Roger
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 134 - 149
  • [24] Multi-Task Deep Reinforcement Learning with PopArt
    Hessel, Matteo
    Soyer, Hubert
    Espeholt, Lasse
    Czarnecki, Wojciech
    Schmitt, Simon
    van Hasselt, Hado
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3796 - 3803
  • [25] A Survey of Multi-Task Deep Reinforcement Learning
    Vithayathil Varghese, Nelson
    Mahmoud, Qusay H.
    [J]. ELECTRONICS, 2020, 9 (09) : 1 - 21
  • [26] Cancer Classification with Multi-task Deep Learning
    Liao, Qing
    Jiang, Lin
    Wang, Xuan
    Zhang, Chunkai
    Ding, Ye
    [J]. 2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 76 - 81
  • [27] Deep Learning for Multi-task Plant Phenotyping
    Pound, Michael P.
    Atkinson, Jonathan A.
    Wells, Darren M.
    Pridmore, Tony P.
    French, Andrew P.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2055 - 2063
  • [28] Multi-task Deep Learning for Image Understanding
    Yu, Bo
    Lane, Ian
    [J]. 2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2014, : 37 - 42
  • [29] Deep Asymmetric Multi-task Feature Learning
    Lee, Hae Beom
    Yang, Eunho
    Hwang, Sung Ju
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [30] Multi-fault diagnosis for gearboxes based on multi-task deep learning
    Zhao X.
    Wu J.
    Qian C.
    Zhang Y.
    Wang L.
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (23): : 271 - 278