Symmetric actor-critic deep reinforcement learning for cascade quadrotor flight control

被引:0
|
作者
Han, Haoran [1 ]
Cheng, Jian [1 ]
Xi, Zhilong [1 ]
Lv, Maolong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Air Force Engn Univ, Air Traff Control & Nav Coll, Xian 710051, Peoples R China
关键词
Quadrotor; Flight control; Deep reinforcement learning; Symmetric actor and critic;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Even though deep reinforcement learning (DRL) has been extensively applied to quadrotor flight control to simplify parameter adjustment, it has some drawbacks in terms of control performance, such as instability and asymmetry. To address these problems, we propose an odd symmetric actor to achieve stable and symmetric control performance, and an even critic to stabilize the training process. Concretely, the bias of neural networks is eliminated, and the absolute value operation is adopted to construct the activation function. Furthermore, we devise a cascade architecture, where each module trained with DRL controls a symmetric subsystem of the quadrotor. Comparative simulations have verified the effectiveness of the proposed control scheme, which shows superiority in dealing with high -dimensional, nonlinear subsystems and disadvantage in dealing with low -dimensional, linear subsystems.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Reinforcement learning with actor-critic for knowledge graph reasoning
    Linli Zhang
    Dewei Li
    Yugeng Xi
    Shuai Jia
    Science China Information Sciences, 2020, 63
  • [42] Reinforcement learning with actor-critic for knowledge graph reasoning
    Linli ZHANG
    Dewei LI
    Yugeng XI
    Shuai JIA
    Science China(Information Sciences), 2020, 63 (06) : 223 - 225
  • [43] Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
    Wu, Yue
    Zhai, Shuangfei
    Srivastava, Nitish
    Susskind, Joshua
    Zhang, Jian
    Salakhutdinov, Ruslan
    Goh, Hanlin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [44] MARS: Malleable Actor-Critic Reinforcement Learning Scheduler
    Baheri, Betis
    Tronge, Jacob
    Fang, Bo
    Li, Ang
    Chaudhary, Vipin
    Guan, Qiang
    2022 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2022,
  • [45] Adaptive Assist-as-needed Control Based on Actor-Critic Reinforcement Learning
    Zhang, Yufeng
    Li, Shuai
    Nolan, Karen J.
    Zanotto, Damiano
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 4066 - 4071
  • [46] Actor-Critic Reinforcement Learning for Linear Longitudinal Output Control of a Road Vehicle
    Puccetti, Luca
    Rathgeber, Christian
    Hohmann, Soeren
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2907 - 2913
  • [47] MULTI-STEP ACTOR-CRITIC FRAMEWORK FOR REINFORCEMENT LEARNING IN CONTINUOUS CONTROL
    Huang T.
    Chen G.
    Journal of Applied and Numerical Optimization, 2023, 5 (02): : 189 - 200
  • [48] Network Congestion Control Algorithm Based on Actor-Critic Reinforcement Learning Model
    Xu, Tao
    Gong, Lina
    Zhang, Wei
    Li, Xuhong
    Wang, Xia
    Pan, Wenwen
    ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II, 2018, 1955
  • [49] Actor Critic Deep Reinforcement Learning for Neural Malware Control
    Wang, Yu
    Stokes, Jack W.
    Marinescu, Mady
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1005 - 1012
  • [50] Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
    Haarnoja, Tuomas
    Zhou, Aurick
    Abbeel, Pieter
    Levine, Sergey
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80