Symmetric actor-critic deep reinforcement learning for cascade quadrotor flight control

被引:0
|
作者
Han, Haoran [1 ]
Cheng, Jian [1 ]
Xi, Zhilong [1 ]
Lv, Maolong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Air Force Engn Univ, Air Traff Control & Nav Coll, Xian 710051, Peoples R China
关键词
Quadrotor; Flight control; Deep reinforcement learning; Symmetric actor and critic;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Even though deep reinforcement learning (DRL) has been extensively applied to quadrotor flight control to simplify parameter adjustment, it has some drawbacks in terms of control performance, such as instability and asymmetry. To address these problems, we propose an odd symmetric actor to achieve stable and symmetric control performance, and an even critic to stabilize the training process. Concretely, the bias of neural networks is eliminated, and the absolute value operation is adopted to construct the activation function. Furthermore, we devise a cascade architecture, where each module trained with DRL controls a symmetric subsystem of the quadrotor. Comparative simulations have verified the effectiveness of the proposed control scheme, which shows superiority in dealing with high -dimensional, nonlinear subsystems and disadvantage in dealing with low -dimensional, linear subsystems.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Symmetric actor-critic deep reinforcement learning for cascade quadrotor flight control
    Han, Haoran
    Cheng, Jian
    Xi, Zhilong
    Lv, Maolong
    [J]. NEUROCOMPUTING, 2023, 559
  • [2] Soft Actor-Critic Deep Reinforcement Learning for Fault-Tolerant Flight Control
    Dally, Killian
    van Kampen, Erik-Jan
    [J]. arXiv, 2022,
  • [3] Integrated Actor-Critic for Deep Reinforcement Learning
    Zheng, Jiaohao
    Kurt, Mehmet Necip
    Wang, Xiaodong
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 505 - 518
  • [4] USING ACTOR-CRITIC REINFORCEMENT LEARNING FOR CONTROL AND FLIGHT FORMATION OF QUADROTORS
    Torres, Edgar
    Xu, Lei
    Sardarmehni, Tohid
    [J]. PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 5, 2022,
  • [5] Visual Navigation with Actor-Critic Deep Reinforcement Learning
    Shao, Kun
    Zhao, Dongbin
    Zhu, Yuanheng
    Zhang, Qichao
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [6] Deep Actor-Critic Reinforcement Learning for Anomaly Detection
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [7] Averaged Soft Actor-Critic for Deep Reinforcement Learning
    Ding, Feng
    Ma, Guanfeng
    Chen, Zhikui
    Gao, Jing
    Li, Peng
    [J]. COMPLEXITY, 2021, 2021
  • [8] Actor-Critic Reinforcement Learning for Tracking Control in Robotics
    Pane, Yudha P.
    Nageshrao, Subramanya P.
    Babuska, Robert
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5819 - 5826
  • [9] Actor-Critic Reinforcement Learning for Control With Stability Guarantee
    Han, Minghao
    Zhang, Lixian
    Wang, Jun
    Pan, Wei
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 6217 - 6224
  • [10] ACTOR-CRITIC DEEP REINFORCEMENT LEARNING FOR DYNAMIC MULTICHANNEL ACCESS
    Zhong, Chen
    Lu, Ziyang
    Gursoy, M. Cenk
    Velipasalar, Senem
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 599 - 603