Topological semiinfinite tensor (super)modules

被引:0
|
作者
Esposito, Francesco [1 ]
Penkov, Ivan [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
[2] Constructor Univ, D-28759 Bremen, Germany
关键词
Tensor representation; Universal monoidal category; Tate space; Topological tensor product; Lie superalgebra; REPRESENTATIONS;
D O I
10.1016/j.jalgebra.2023.11.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct universal monoidal categories of topological tensor supermodules over the Lie superalgebras gl(V circle plus Pi V) and osp(V circle plus Pi V) associated with a Tate space V. Here V circle plus Pi V is a Z/2Z-graded topological vector space whose even and odd parts are isomorphic to V. We discuss the purely even case first, by introducing monoidal categories (T) over cap (gl(V)), (T) over cap (o(V)) and (T) over cap (sp(V)), and show that these categories are anti-equivalent to respective previously studied categories T-gl(V), T-o(V), T-sp(V). These latter categories have certain universality properties as monoidal categories, which consequently carry over to (T) over cap (gl(V)), (T) over cap (o(V)) and (T) over cap (sp(V)). Moreover, the categories T-o(V) and T-sp(V) are known to be equivalent, and this implies the equivalence of the categories (T) over cap (o(V)) and (T) over cap (sp(V)). After introducing a supersymmetric setting, we establish the equivalence of the category (T) over cap (gl(V)) with the category (T) over cap (gl(V circle plus Pi V)), and the equivalence of both categories T-o(V) and (T) over cap (sp(V)) with (T) over cap (osp(V circle plus Pi V)). (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 255
页数:19
相关论文
共 50 条
  • [11] TOPOLOGICAL GLOBULE MODULES
    LANGMANN, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 272 : 14 - 22
  • [12] TOPOLOGICAL TENSOR PRODUCT
    TANRE, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (03): : 77 - 79
  • [13] Functional equivalence of topological spaces and topological modules
    Choban, Mitrofan M.
    Dumbraveanu, Radu N.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (01): : 77 - 90
  • [14] Tensor product of gamma modules
    Rezaei A.H.
    Davvaz B.
    Afrika Matematika, 2015, 26 (7-8) : 1601 - 1608
  • [15] Syzygies and tensor product of modules
    Celikbas, Olgur
    Piepmeyer, Greg
    MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (1-2) : 457 - 468
  • [16] On constructivizibility of the tensor product of modules
    Latkin, IV
    SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (02) : 330 - 333
  • [17] TORSION IN TENSOR POWERS OF MODULES
    Celikbas, Olgur
    Iyengar, Srikanth B.
    Piepmeyer, Greg
    Wiegand, Roger
    NAGOYA MATHEMATICAL JOURNAL, 2015, 219 : 113 - 125
  • [18] VANISHING TENSOR POWERS OF MODULES
    WIEGAND, R
    WIEGAND, S
    MATHEMATISCHE ZEITSCHRIFT, 1972, 129 (04) : 351 - 358
  • [19] Defect groups of tensor modules
    Alghamdi, AM
    Khammash, AA
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 167 (2-3) : 165 - 173
  • [20] Tensor products of tilting modules
    Meixiang Chen
    Qinghua Chen
    Frontiers of Mathematics in China, 2017, 12 : 51 - 62