A Survey on Hyperlink Prediction

被引:14
|
作者
Chen, Can [1 ]
Liu, Yang-Yu [1 ,2 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Channing Div Network Med, Boston, MA 02115 USA
[2] Univ Illinois, Ctr Artificial Intelligence & Modeling, Carl R Woese Inst Genom Biol, Champaign, IL 61801 USA
基金
美国国家卫生研究院;
关键词
Hypertext systems; Prediction methods; Learning systems; Indexes; Surveys; Resource management; Genomics; Deep learning; graph convolutional networks (GCNs); hypergraph learning; hypergraphs; hyperlink prediction;
D O I
10.1109/TNNLS.2023.3286280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a natural extension of link prediction on graphs, hyperlink prediction aims for the inference of missing hyperlinks in hypergraphs, where a hyperlink can connect more than two nodes. Hyperlink prediction has applications in a wide range of systems, from chemical reaction networks and social communication networks to protein-protein interaction networks. In this article, we provide a systematic and comprehensive survey on hyperlink prediction. We adopt a classical taxonomy from link prediction to classify the existing hyperlink prediction methods into four categories: similarity-based, probability-based, matrix optimization-based, and deep learning-based methods. To compare the performance of methods from different categories, we perform a benchmark study on various hypergraph applications using representative methods from each category. Notably, deep learning-based methods prevail over other methods in hyperlink prediction.
引用
收藏
页码:15034 / 15050
页数:17
相关论文
共 50 条
  • [31] Hyperlink network analysis of the educational blog
    Liu, Eric Zhi Feng
    Shih, Ru Chu
    Tsai, Yuan Lung
    BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY, 2011, 42 (02) : E25 - E29
  • [32] Hyperlink-Aware Object Retrieval
    Zhang, Wei
    Ngo, Chong-Wah
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (09) : 4186 - 4198
  • [33] Hyperlink Network Analysis of a Tourism Destination
    Raisi, Hossein
    Baggio, Rodolfo
    Barratt-Pugh, Llandis
    Willson, Gregory
    JOURNAL OF TRAVEL RESEARCH, 2018, 57 (05) : 671 - 686
  • [34] Web friends ('Piano & Keyboard' hyperlink)
    Pili, R
    PIANO & KEYBOARD, 1999, (196): : 10 - 10
  • [35] Hyperlink regression via Bregman divergence
    Okuno, Akifumi
    Shimodaira, Hidetoshi
    NEURAL NETWORKS, 2020, 126 : 362 - 383
  • [36] Service hyperlink for exploratory service composition
    Yan, Shuying
    Han, Yanbo
    Wang, Jing
    Liu, Chen
    ICEBE 2007: IEEE INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING, PROCEEDINGS, 2007, : 581 - 588
  • [37] Survey on clinical prediction models for diabetes prediction
    Jayanthi N.
    Babu B.V.
    Rao N.S.
    Journal of Big Data, 4 (1)
  • [38] Innovation in hyperlink and social media networks: Comparing connection strategies of innovative companies in hyperlink and social media networks
    Arifi, Dorian
    Resch, Bernd
    Kinne, Jan
    Lenz, David
    PLOS ONE, 2023, 18 (03):
  • [39] Mapping the Dutch Energy Transition Hyperlink Network
    Ludovico, Nuccio
    Del Valle, Marc Esteve
    Ruzzenenti, Franco
    SUSTAINABILITY, 2020, 12 (18)
  • [40] Exploration of Compact Sequence Diagram Using Hyperlink
    Aparna, V. K.
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,