A Survey on Hyperlink Prediction

被引:14
|
作者
Chen, Can [1 ]
Liu, Yang-Yu [1 ,2 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Channing Div Network Med, Boston, MA 02115 USA
[2] Univ Illinois, Ctr Artificial Intelligence & Modeling, Carl R Woese Inst Genom Biol, Champaign, IL 61801 USA
基金
美国国家卫生研究院;
关键词
Hypertext systems; Prediction methods; Learning systems; Indexes; Surveys; Resource management; Genomics; Deep learning; graph convolutional networks (GCNs); hypergraph learning; hypergraphs; hyperlink prediction;
D O I
10.1109/TNNLS.2023.3286280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a natural extension of link prediction on graphs, hyperlink prediction aims for the inference of missing hyperlinks in hypergraphs, where a hyperlink can connect more than two nodes. Hyperlink prediction has applications in a wide range of systems, from chemical reaction networks and social communication networks to protein-protein interaction networks. In this article, we provide a systematic and comprehensive survey on hyperlink prediction. We adopt a classical taxonomy from link prediction to classify the existing hyperlink prediction methods into four categories: similarity-based, probability-based, matrix optimization-based, and deep learning-based methods. To compare the performance of methods from different categories, we perform a benchmark study on various hypergraph applications using representative methods from each category. Notably, deep learning-based methods prevail over other methods in hyperlink prediction.
引用
收藏
页码:15034 / 15050
页数:17
相关论文
共 50 条
  • [1] Readers' Demanded Hyperlink Prediction in Wikipedia
    Gundala, Laxmi Amulya
    Spezzano, Francesca
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1805 - 1807
  • [2] Negative Sampling for Hyperlink Prediction in Networks
    Patil, Prasanna
    Sharma, Govind
    Murty, M. Narasimha
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT II, 2020, 12085 : 607 - 619
  • [3] Interpretable Subgraph Feature Extraction for Hyperlink Prediction
    Li, Peiyan
    Pan, Liming
    Li, Kai
    Plant, Claudia
    Boehm, Christian
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 279 - 288
  • [4] Hyperlink Prediction in Hypernetworks Using Latent Social Features
    Xu, Ye
    Rockmore, Dan
    Kleinbaum, Adam M.
    DISCOVERY SCIENCE, 2013, 8140 : 324 - 339
  • [5] The Social Hyperlink
    Adamic, Lada A.
    20TH ACM CONFERENCE ON HYPERTEXT AND HYPERMEDIA (HYPERTEXT 2009), 2009, : 1 - 1
  • [6] C3MM: Clique-Closure based Hyperlink Prediction
    Sharma, Govind
    Patil, Prasanna
    Murty, M. Narasimha
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3364 - 3370
  • [7] Hyperlink is not dead!
    Ooghe-Tabanou, Benjamin
    Jacomy, Mathieu
    Girard, Paul
    Plique, Guillaume
    WS.2 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON WEB STUDIES, 2018, : 12 - 18
  • [8] Spatial Hyperlink
    Lai, Wan-Ying
    Wu, Ming-Chang
    Shih, Shen-Guan
    LEONARDO, 2013, 46 (04) : 406 - 407
  • [9] Hyperlink prediction via local random walks and Jensen-Shannon divergence
    Xu, Xin-Jian
    Deng, Chong
    Zhang, Li-Jie
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (03):
  • [10] What do hyperlink-proposals and request-prediction have in common?
    Haffner, EG
    Roth, U
    Heuer, A
    Engel, T
    Meinel, C
    ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS, 2000, 1909 : 285 - 293