Multi-domain Network Service Placement Optimization Using Curriculum Reinforcement Learning

被引:0
|
作者
Shahbazi, Arzhang [1 ]
Cherrared, Sihem [1 ]
Guillemin, Fabrice [1 ]
机构
[1] Orange Innovat, Caen, France
关键词
Curriculum Reinforcement Learning; Slicing; Multi-domain;
D O I
10.1109/NFV-SDN59219.2023.10329592
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a multi-agent Deep Reinforcement learning (DRL) for the placement of network services in a multi-domain context. The objective is to learn how to optimize resources like CPU and memory and maximize the number of accepted services. We apply two stages of learning: vertical and horizontal learning. In vertical learning, the agents learn how to place the functions inside each domain. In horizontal learning, the master agent learns how to divide the slice or service into sub-chains of Virtual Network Functions (VNFs) and how to choose the domains for the placement of each slice VNF. We apply Proximal Policy Optimization (PPO) with curriculum learning and compare our solution to PPO and the Greedy algorithm.
引用
下载
收藏
页码:21 / 26
页数:6
相关论文
共 50 条
  • [31] On Using Physical Programming for Multi-Domain SFC Placement With Limited Visibility
    Toumi, Nassima
    Bernier, Olivier
    Meddour, Djamal-Eddine
    Ksentini, Adlen
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2022, 10 (04) : 2787 - 2803
  • [32] Multi-domain Bandwidth on Demand service provisioning using SDN
    Mendiola, Alaitz
    Astorga, Jasone
    Jacob, Eduardo
    Stamos, Kostas
    Juszczyk, Artur
    Dombek, Krzysztof
    Vuleta-Radoicic, Jovana
    Ortiz, Jordi
    2016 IEEE NETSOFT CONFERENCE AND WORKSHOPS (NETSOFT), 2016, : 353 - 354
  • [33] QoS-Aware VM Placement in Multi-Domain Service Level Agreements Scenarios
    Lu, Kuan
    Yahyapour, Ramin
    Wieder, Philipp
    Kotsokalis, Constantinos
    Yaqub, Edwin
    Jehangiri, Ali Imran
    2013 IEEE SIXTH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD 2013), 2013, : 661 - 668
  • [34] Domains as Objectives: Multi-Domain Reinforcement Learning with Convex-Coverage Set Learning for Domain Uncertainty Awareness
    Ilboudo, Wendyam Eric Lionel
    Kobayashi, Taisuke
    Matsubara, Takamitsu
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 5622 - 5629
  • [35] A deep reinforcement learning-based algorithm for reliability-aware multi-domain service deployment in smart ecosystems
    Kibalya, Godfrey
    Serrat, Joan
    Gorricho, Juan-Luis
    Okello, Dorothy
    Zhang, Peiying
    NEURAL COMPUTING & APPLICATIONS, 2020, 35 (33): : 23795 - 23817
  • [36] Reinforcement Q-learning enabled energy-efficient service function chain provisioning in multi-domain networks
    Wang, Zhiying
    Huang, Guanhua
    Sun, Gang
    Yu, Hongfang
    Sun, Jian
    Peer-to-Peer Networking and Applications, 2025, 18 (01) : 1 - 19
  • [37] A deep reinforcement learning-based algorithm for reliability-aware multi-domain service deployment in smart ecosystems
    Godfrey Kibalya
    Joan Serrat
    Juan-Luis Gorricho
    Dorothy Okello
    Peiying Zhang
    Neural Computing and Applications, 2023, 35 : 23795 - 23817
  • [38] Digital twin-assisted service function chaining in multi-domain computing power networks with multi-agent reinforcement learning
    Wang, Kan
    Yuan, Peng
    Jan, Mian Ahmad
    Khan, Fazlullah
    Gadekallu, Thippa Reddy
    Kumari, Saru
    Pan, Hao
    Liu, Lei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 294 - 307
  • [39] MADELYN: Multi-Domain Multi-Agent Reinforcement Learning for Data-center Networks
    Kattepur, Ajay
    David, Sushanth
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 624 - 629
  • [40] Particle Swarm Optimization Based Multi-Domain Virtual Network Embedding
    Guo, Kailing
    Wang, Ying
    Qiu, Xuesong
    Li, Wenjing
    Xiao, Ailing
    PROCEEDINGS OF THE 2015 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM), 2015, : 798 - 801