Multi-domain Network Service Placement Optimization Using Curriculum Reinforcement Learning

被引:0
|
作者
Shahbazi, Arzhang [1 ]
Cherrared, Sihem [1 ]
Guillemin, Fabrice [1 ]
机构
[1] Orange Innovat, Caen, France
关键词
Curriculum Reinforcement Learning; Slicing; Multi-domain;
D O I
10.1109/NFV-SDN59219.2023.10329592
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a multi-agent Deep Reinforcement learning (DRL) for the placement of network services in a multi-domain context. The objective is to learn how to optimize resources like CPU and memory and maximize the number of accepted services. We apply two stages of learning: vertical and horizontal learning. In vertical learning, the agents learn how to place the functions inside each domain. In horizontal learning, the master agent learns how to divide the slice or service into sub-chains of Virtual Network Functions (VNFs) and how to choose the domains for the placement of each slice VNF. We apply Proximal Policy Optimization (PPO) with curriculum learning and compare our solution to PPO and the Greedy algorithm.
引用
下载
收藏
页码:21 / 26
页数:6
相关论文
共 50 条
  • [1] On using Deep Reinforcement Learning for Multi-Domain SFC placement
    Toumi, Nassima
    Bagaa, Miloud
    Ksentini, Adlen
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [2] Curriculum-heavy reinforcement learning for multi-domain operations
    Pioch, Nicholas
    Sheldon, Lucas
    Harris, Thomas
    Henry, Matt
    Spisak, Andrew
    Timm, Mikayla
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS V, 2023, 12538
  • [3] Reinforcement Learning-based Multi-domain Network Slice Provisioning
    Wu, Zhouxiang
    Ishigaki, Genya
    Gour, Riti
    Li, Congzhou
    Mi, Feng
    Talluri, Subhash
    Jue, Jason P.
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1899 - 1904
  • [4] Optimization of Shunt Placement for the Norwood Surgery Using Multi-Domain Modeling
    Moghadam, Mahdi Esmaily
    Migliavacca, Francesco
    Vignon-Clementel, Irene E.
    Hsia, Tain-Yen
    Marsden, Alison L.
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2012, 134 (05):
  • [5] A Privacy-Preserving Reinforcement Learning Algorithm for Multi-Domain Virtual Network Embedding
    Andreoletti, Davide
    Velichkova, Tanya
    Verticale, Giacomo
    Tornatore, Massimo
    Giordano, Silvia
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04): : 2291 - 2304
  • [6] A Privacy-Preserving Reinforcement Learning Algorithm for Multi-Domain Virtual Network Embedding
    Andreoletti, Davide
    Velichkova, Tanya
    Verticale, Giacomo
    Tornatore, Massimo
    Giordano, Silvia
    Andreoletti, Davide (davide.andreoletti@supsi.ch), 1600, Institute of Electrical and Electronics Engineers Inc. (17): : 2291 - 2304
  • [7] Efficient service provisioning in a multi-domain network environment
    Louta, M
    Loutas, E
    Michalas, A
    Kraounakis, S
    Zissopoulos, D
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 541 - 546
  • [8] Hierarchical Reinforcement Learning With Guidance for Multi-Domain Dialogue Policy
    Rohmatillah, Mahdin
    Chien, Jen-Tzung
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 748 - 761
  • [9] A Curriculum Learning Approach for Multi-Domain Text Classification Using Keyword Weight Ranking
    Yuan, Zilin
    Li, Yinghui
    Li, Yangning
    Zheng, Hai-Tao
    He, Yaobin
    Liu, Wenqiang
    Huang, Dongxiao
    Wu, Bei
    ELECTRONICS, 2023, 12 (14)
  • [10] Virtualized controller placement for multi-domain optical transport networks using machine learning
    Sabidur Rahman
    Tanjila Ahmed
    Sifat Ferdousi
    Partha Bhaumik
    Pulak Chowdhury
    Massimo Tornatore
    Goutam Das
    Biswanath Mukherjee
    Photonic Network Communications, 2020, 40 : 126 - 136