Annotator Consensus Prediction for Medical Image Segmentation with Diffusion Models

被引:1
|
作者
Amit, Tomer [1 ]
Shichrur, Shmuel [1 ]
Shaharabany, Tal [1 ]
Wolf, Lior [1 ]
机构
[1] Tel Aviv Univ, Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Multi annotator; Image segmentation; Diffusion Model;
D O I
10.1007/978-3-031-43901-8_52
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A major challenge in the segmentation of medical images is the large inter- and intra-observer variability in annotations provided by multiple experts. To address this challenge, we propose a novel method for multi-expert prediction using diffusion models. Our method leverages the diffusion-based approach to incorporate information from multiple annotations and fuse it into a unified segmentation map that reflects the consensus of multiple experts. We evaluate the performance of our method on several datasets of medical segmentation annotated by multiple experts and compare it with the state-of-the-art methods. Our results demonstrate the effectiveness and robustness of the proposed method. Our code is publicly available at https://github.com/tomeramit/Annotator-Consensus-Prediction.
引用
收藏
页码:544 / 554
页数:11
相关论文
共 50 条
  • [11] Active Volume Models for Medical Image Segmentation
    Shen, Tian
    Li, Hongsheng
    Huang, Xiaolei
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (03) : 774 - 791
  • [12] MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model
    Wu, Junde
    Fu, Rao
    Fang, Huihui
    Zhang, Yu
    Yang, Yehui
    Xiong, Haoyi
    Liu, Huiying
    Xu, Yanwu
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1623 - 1639
  • [13] HiDiff: Hybrid Diffusion Framework for Medical Image Segmentation
    Chen, Tao
    Wang, Chenhui
    Chen, Zhihao
    Lei, Yiming
    Shan, Hongming
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (10) : 3570 - 3583
  • [14] Automated Annotator Variability Inspection for Biomedical Image Segmentation
    Schilling, Marcel P.
    Scherr, Tim
    Muenke, Friedrich R.
    Neumann, Oliver
    Schutera, Mark
    Mikut, Ralf
    Reischl, Markus
    Schilling, Marcel
    IEEE ACCESS, 2022, 10 : 2753 - 2765
  • [15] Automated Annotator Variability Inspection for Biomedical Image Segmentation
    Schilling, Marcel P.
    Scherr, Tim
    Munke, Friedrich R.
    Neumann, Oliver
    Schutera, Mark
    Mikut, Ralf
    Reischl, Markus
    IEEE Access, 2022, 10 : 2753 - 2765
  • [16] Multi-consistency for semi-supervised medical image segmentation via diffusion models
    Chen, Yunzhu
    Liu, Yang
    Lu, Manti
    Fu, Liyao
    Yang, Feng
    PATTERN RECOGNITION, 2025, 161
  • [17] Enhancing Label-Efficient Medical Image Segmentation with Text-Guided Diffusion Models
    Feng, Chun-Mei
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VIII, 2024, 15008 : 253 - 262
  • [18] Diffusion Models for Medical Image Computing: A Survey
    Shi, Yaqing
    Abulizi, Abudukelimu
    Wang, Hao
    Feng, Ke
    Abudukelimu, Nihemaiti
    Su, Youli
    Abudukelimu, Halidanmu
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (01): : 357 - 383
  • [19] Evaluating Medical Image Segmentation Models Using Augmentation
    Sayed, Mattin
    Saba-Sadiya, Sari
    Wichtlhuber, Benedikt
    Dietz, Julia
    Neitzel, Matthias
    Keller, Leopold
    Roig, Gemma
    Bucher, Andreas M.
    TOMOGRAPHY, 2024, 10 (12) : 2128 - 2143
  • [20] Medical image segmentation and retrieval via deformable models
    Liu, LF
    Sclaroff, S
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2001, : 1071 - 1074