MTGDC: A Multi-Scale Tensor Graph Diffusion Clustering for Single-Cell RNA Sequencing Data

被引:4
|
作者
Liu, Qiaoming [1 ]
Wang, Dong [2 ]
Zhou, Li [2 ]
Li, Jie [2 ]
Wang, Guohua [2 ]
机构
[1] Harbin Inst Technol, Zhengzhou Res Inst, Sch Med & Hlth, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Tensors; Clustering algorithms; Sequential analysis; RNA; Diffusion processes; Topology; Kernel; Clustering; single-cell RNA-seq; tensor graph; diffusion mapping; cell heterogeneity; GENE-EXPRESSION; HETEROGENEITY; IDENTIFICATION; FUSION;
D O I
10.1109/TCBB.2023.3293112
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) is a new technology that focuses on the expression levels for each cell to study cell heterogeneity. Thus, new computational methods matching scRNA-seq are designed to detect cell types among various cell groups. Herein, we propose a Multi-scale Tensor Graph Diffusion Clustering (MTGDC) for single-cell RNA sequencing data. It has the following mechanisms: 1) To mine potential similarity distributions among cells, we design a multi-scale affinity learning method to construct a fully connected graph between cells; 2) For each affinity matrix, we propose an efficient tensor graph diffusion learning framework to learn high-order information among multi-scale affinity matrices. First, the tensor graph is explicitly introduced to measure cell-cell edges with local high-order relationship information. To further preserve more global topology structure information in the tensor graph, MTGDC implicitly considers the propagation of information via a data diffusion process by designing a simple and efficient tensor graph diffusion update algorithm. 3) Finally, we mix together the multi-scale tensor graphs to obtain the fusion high-order affinity matrix and apply it to spectral clustering. Experiments and case studies showed that MTGDC had obvious advantages over the state-of-art algorithms in robustness, accuracy, visualization, and speed.
引用
收藏
页码:3056 / 3067
页数:12
相关论文
共 50 条
  • [21] Clustering single-cell rna-sequencing data based on matching clusters structures
    Wang, Yizhang
    Zhou, You
    Pang, Wie
    Liang, Yanchun
    Wang, Shu
    Tehnicki Vjesnik, 2020, 27 (01): : 89 - 95
  • [22] Machine learning and statistical methods for clustering single-cell RNA-sequencing data
    Petegrosso, Raphael
    Li, Zhuliu
    Kuang, Rui
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1209 - 1223
  • [23] A HIERARCHICAL BAYESIAN MODEL FOR SINGLE-CELL CLUSTERING USING RNA-SEQUENCING DATA
    Liu, Yiyi
    Warren, Joshua L.
    Zhao, Hongyu
    ANNALS OF APPLIED STATISTICS, 2019, 13 (03): : 1733 - 1752
  • [24] Clustering Single-cell RNA-sequencing Data based on Matching Clusters Structures
    Wang, Yizhang
    Zhou, You
    Pang, Wie
    Liang, Yanchun
    Wang, Shu
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2020, 27 (01): : 89 - 95
  • [25] Joint learning dimension reduction and clustering of single-cell RNA-sequencing data
    Wu, Wenming
    Ma, Xiaoke
    BIOINFORMATICS, 2020, 36 (12) : 3825 - 3832
  • [26] Multi-scale graph clustering network
    Li, Xiulai
    Wu, Wei
    Zhang, Bin
    Peng, Xin
    INFORMATION SCIENCES, 2024, 678
  • [27] Evaluation of single-cell classifiers for single-cell RNA sequencing data sets
    Zhao, Xinlei
    Wu, Shuang
    Fang, Nan
    Sun, Xiao
    Fan, Jue
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) : 1581 - 1595
  • [28] Towards multi-fusion graph neural network for single-cell RNA sequence clustering
    Yang, Chen-Min
    Huang, Dong
    Xu, Yuan-Kun
    He, Xiuting
    Zhang, Guang-Yu
    Wang, Chang-Dong
    NEUROCOMPUTING, 2025, 631
  • [29] Complex Analysis of Single-Cell RNA Sequencing Data
    Khozyainova, Anna A. A.
    Valyaeva, Anna A. A.
    Arbatsky, Mikhail S. S.
    Isaev, Sergey V. V.
    Iamshchikov, Pavel S. S.
    Volchkov, Egor V. V.
    Sabirov, Marat S. S.
    Zainullina, Viktoria R. R.
    Chechekhin, Vadim I. I.
    Vorobev, Rostislav S. S.
    Menyailo, Maxim E. E.
    Tyurin-Kuzmin, Pyotr A. A.
    Denisov, Evgeny V. V.
    BIOCHEMISTRY-MOSCOW, 2023, 88 (02) : 231 - 252
  • [30] Splatter: simulation of single-cell RNA sequencing data
    Zappia, Luke
    Phipson, Belinda
    Oshlack, Alicia
    GENOME BIOLOGY, 2017, 18