Automatic recognition and detection of building targets in urban remote sensing images using an improved regional convolutional neural network algorithm

被引:0
|
作者
Lin, Sida [1 ]
机构
[1] Huaqiao Univ, Sch Architecture, Xiamen, Fujian, Peoples R China
关键词
artificial intelligence; image processing;
D O I
10.1049/ccs2.12082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accuracy of regional convolutional neural network (R-CNN) algorithms on image recognition detection remains to be improved. The authors optimised the Mask R-CNN algorithm and tested it through experiments on the automatic recognition of building targets in urban remote sensing images. It was found that the improved Mask R-CNN algorithm recognised more complete building targets and clearer edges than the original algorithm with a precision of 95.75%, a recall rate of 96.28% and a mean average precision (mAP) of 0.9403, and it also reduced the detection time per image to 0.264 s, all of which were better than other R-CNN algorithms. The ablation experiments showed that compared with the original Mask R-CNN algorithm, the improvement in the mAP of the Mask R-CNN algorithms with an improved feature pyramid network and an improved non-maximum suppression (NMS) algorithm was 0.0206 and 0.0119, respectively, while the improvement in the mAP of the improved Mask R-CNN algorithm was 0.0376. The two improvement methods adopted for the Mask R-CNN algorithm were proved to be feasible and can effectively improve the automatic recognition and detection accuracy and efficiency of building targets in urban remote sensing images.
引用
收藏
页码:132 / 137
页数:6
相关论文
共 50 条
  • [21] A novel convolutional neural network architecture of multispectral remote sensing images for automatic material classification
    Lin, Chuen-Horng
    Wang, Ting-You
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 97
  • [22] Object Detection in Remote Sensing Images Using Multiscale Convolutional Neural Networks
    Yao Qunli
    Hu Xian
    Lei Hong
    ACTA OPTICA SINICA, 2019, 39 (11)
  • [23] Aircraft detection in remote sensing images using cascade convolutional neural networks
    Yu D.
    Guo H.
    Zhang B.
    Zhao C.
    Lu J.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (08): : 1046 - 1058
  • [24] Detection of Small Ships in Remote Sensing Images based on Deep Convolutional Neural Network
    Shi, Tingchao
    Liu, Mingyong
    Niu, Yun
    You, Lianggen
    Xuan, Liwei
    Wang, Cong
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [25] Aircraft Detection Method Based on Deep Convolutional Neural Network for Remote Sensing Images
    Guo Zhi
    Song Ping
    Zhang Yi
    Yan Menglong
    Sun Xian
    Sun Hao
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (11) : 2684 - 2690
  • [26] Region-Enhanced Convolutional Neural Network for Object Detection in Remote Sensing Images
    Lei, Jianjun
    Luo, Xiaowei
    Fang, Leyuan
    Wang, Mengyuan
    Gu, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5693 - 5702
  • [27] Convolutional Neural Network for the Semantic Segmentation of Remote Sensing Images
    Alam, Muhammad
    Wang, Jian-Feng
    Guangpei, Cong
    Yunrong, L., V
    Chen, Yuanfang
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (01): : 200 - 215
  • [28] Convolutional Neural Network for the Semantic Segmentation of Remote Sensing Images
    Muhammad Alam
    Jian-Feng Wang
    Cong Guangpei
    LV Yunrong
    Yuanfang Chen
    Mobile Networks and Applications, 2021, 26 : 200 - 215
  • [29] Urban Area Detection in Very High Resolution Remote Sensing Images Using Deep Convolutional Neural Networks
    Tian, Tian
    Li, Chang
    Xu, Jinkang
    Ma, Jiayi
    SENSORS, 2018, 18 (03)
  • [30] Remote Sensing Landslide Recognition Based on Convolutional Neural Network
    Wang, Yu
    Wang, Xiaofei
    Jian, Junfan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019