OFDR analysis of Si photonics FMCW LiDAR chip

被引:10
|
作者
Kamata, Mikiya [1 ]
Baba, Toshihiko [1 ]
机构
[1] Yokohama Natl Univ, Dept Elect & Comp Engn, 79-5 Tokiwadai,Hodogaya Ku, Yokohama 2408501, Japan
基金
日本学术振兴会;
关键词
Compendex;
D O I
10.1364/OE.494105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We experimentally analyzed the internal reflection and loss of each component in a Si photonics frequency-modulated continuous-wave light detection and ranging (FMCW LiDAR) device using optical frequency domain reflectometry (OFDR) with a spatial resolution of better than 2.5 & mu;m. Sweeping the incident laser wavelength by 120 nm, the reflections and losses of wire waveguides, widened waveguides, and optical switches on the chip were individually revealed. The slow-light grating (SLG) beam scanner, which has a limited working wavelength range, was evaluated with a spatial resolution of >10 & mu;m by narrowing the wavelength sweep range. Consequently, a strong reflection was observed at the transition between the wire waveguide and the SLG, which can be a noise source in the FMCW LiDAR. Additionally, this study showed that the OFDR can be an important analysis tool for Si photonics integrated circuits. To our knowledge, this is the first demonstration, showing that the OFDR can be an important analysis tool for Si photonic integrated circuits.
引用
收藏
页码:25245 / 25252
页数:8
相关论文
共 50 条
  • [31] FMCW lidar for multiple-target sounding
    Batet, Oscar
    Dios, Federico
    Comeron, Adolfo
    REMOTE SENSING SYSTEM ENGINEERING III, 2010, 7813
  • [32] Metal-Insulator-Si Hybrid Plasmonic Waveguide Components for On-Chip Photonics
    Zhu, Shiyang
    Lo, G. Q.
    Kwong, D. L.
    2012 IEEE ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2012, : 128 - 129
  • [33] Experimental Investigation on the Ranging Resolution of a FMCW Lidar
    Xiao, Zhenzhen
    Wu, Zhengmao
    Jiang, Zaifu
    Yue, Dianzuo
    Xia, Guangqiong
    PHOTONICS, 2022, 9 (01)
  • [34] Quantum enhancement detection techniques for FMCW LiDAR
    Huang, Ming-Da
    Hunza, M.
    Wang, Yuan-Feng
    Jiang, Zhan-Feng
    Qin, Qi
    OPTICS EXPRESS, 2024, 32 (22): : 38864 - 38878
  • [35] Interpolation linearization predistortion technology for FMCW LiDAR
    Chen, Honggang
    Zhao, Le
    Hu, Leilei
    Chen, Long
    Zhang, Bo
    Luo, Yong
    Liang, Xuerui
    Gan, Linfei
    APPLIED OPTICS, 2024, 63 (06) : 1538 - 1545
  • [36] Model establishment and error correction of FMCW lidar
    Miao Y.
    Wang X.
    Zhu H.
    Bao C.
    Tan J.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (09): : 1295 - 1303
  • [37] Chip-Scale Electro-Optical 3D FMCW Lidar with 8μm Ranging Precision
    Behroozpour, Behnam
    Sandborn, Phillip A. M.
    Quack, Niels
    Seok, Tae Joon
    Matsui, Yasuhiro
    Wu, Ming C.
    Boser, Bernhard E.
    2016 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2016, 59 : 214 - U294
  • [38] Reconfigurable Photonics on a Glass Chip
    Dyakonov, I., V
    Pogorelov, I. A.
    Bobrov, I. B.
    Kalinkin, A. A.
    Straupe, S. S.
    Kulik, S. P.
    Dyakonov, P., V
    Evlashin, S. A.
    PHYSICAL REVIEW APPLIED, 2018, 10 (04):
  • [39] SILICON PHOTONICS Synthesizer on a chip
    Won, Rachel
    NATURE PHOTONICS, 2018, 12 (06) : 313 - 313
  • [40] On-Chip Multimode Photonics
    Gabrielli, L. H.
    Liu, D.
    Johnson, S. G.
    Lipson, M.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,