On the thermal effect of porous material in porous media Rayleigh-Benard convection

被引:3
|
作者
Zhong, Jun [1 ,2 ]
Liu, Shuang [1 ,2 ,3 ]
Sun, Chao [1 ,2 ,4 ]
机构
[1] Tsinghua Univ, Ctr Combust Energy, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Energy & Power Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Sch Aerosp Engn, Dept Engn Mech, Beijing 100084, Peoples R China
来源
FLOW | 2023年 / 3卷
基金
中国国家自然科学基金;
关键词
Benard convection; Turbulent convection; IMMERSED BOUNDARY METHOD; HEAT-TRANSFER; FLOW; LAMINAR; LADEN; SIMULATION;
D O I
10.1017/flo.2023.7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We perform a two-dimensional numerical study on the thermal effect of porous media on global heat transport and flow structure in Rayleigh-B & eacute;nard (RB) convection, focusing on the role of thermal conductivity ? of porous media, which ranges from 0.1 to 50 relative to the fluid. The simulation is carried out in a square RB cell with the Rayleigh number Ra ranging from 107 to 109 and the Prandtl number Pr fixed at 4.3. The porosity of the system is fixed at F = 0.812, with the porous media modelled by a set of randomly displayed circular obstacles. For a fixed Ra, the increase of conductivity shows a small effect on the total heat transfer, slightly depressing the Nusselt number. The limited influence comes from the small number of obstacles contacting with thermal plumes in the system as well as the counteraction of the increased plume area and the depressed plume strength. The study shows that the global heat transfer is insensitive to the conduction effect of separated porous media in the bulk region, which may have implications for industrial designs.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Rayleigh-Benard percolation transition of thermal convection in porous media: Computational fluid dynamics, NMR velocity mapping, NMR temperature mapping
    Weber, M
    Kimmich, R
    PHYSICAL REVIEW E, 2002, 66 (05): : 13 - 056301
  • [22] Rayleigh-Benard Convection in a Gas-Saturated Porous Medium at Low Darcy Numbers
    Bavandla, K. C.
    Srinivasan, V.
    ASME JOURNAL OF HEAT AND MASS TRANSFER, 2024, 146 (05):
  • [23] Scaling in Rayleigh-Benard convection
    Lindborg, Erik
    JOURNAL OF FLUID MECHANICS, 2023, 956
  • [24] DYNAMICS OF THE RAYLEIGH-BENARD CONVECTION
    PLATTEN, JK
    LEGROS, JC
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1980, 5 (04) : 243 - 254
  • [25] Thermal boundary layers in turbulent Rayleigh-Benard convection
    du Puits, R.
    Resagk, C.
    Thess, A.
    ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 589 - 592
  • [26] Multiphase Rayleigh-Benard convection
    Oresta, Paolo
    Fornarelli, Francesco
    Prosperetti, Andrea
    MECHANICAL ENGINEERING REVIEWS, 2014, 1 (01):
  • [27] Homogeneous rayleigh-benard convection
    Calzavarini, E.
    Lohse, D.
    Toschi, F.
    PROGRESS IN TURBULENCE II, 2007, 109 : 181 - +
  • [28] Thermal influence of boundaries on the onset of Rayleigh-Benard convection
    Cerisier, P
    Rahal, S
    Cordonnier, J
    Lebon, G
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (21) : 3309 - 3320
  • [29] SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION
    CASTAING, B
    GUNARATNE, G
    HESLOT, F
    KADANOFF, L
    LIBCHABER, A
    THOMAE, S
    WU, XZ
    ZALESKI, S
    ZANETTI, G
    JOURNAL OF FLUID MECHANICS, 1989, 204 : 1 - 30
  • [30] INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    MANNEVILLE, P
    POMEAU, Y
    JOURNAL DE PHYSIQUE LETTRES, 1980, 41 (15): : L341 - L345