On the thermal effect of porous material in porous media Rayleigh-Benard convection

被引:3
|
作者
Zhong, Jun [1 ,2 ]
Liu, Shuang [1 ,2 ,3 ]
Sun, Chao [1 ,2 ,4 ]
机构
[1] Tsinghua Univ, Ctr Combust Energy, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Energy & Power Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Sch Aerosp Engn, Dept Engn Mech, Beijing 100084, Peoples R China
来源
FLOW | 2023年 / 3卷
基金
中国国家自然科学基金;
关键词
Benard convection; Turbulent convection; IMMERSED BOUNDARY METHOD; HEAT-TRANSFER; FLOW; LAMINAR; LADEN; SIMULATION;
D O I
10.1017/flo.2023.7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We perform a two-dimensional numerical study on the thermal effect of porous media on global heat transport and flow structure in Rayleigh-B & eacute;nard (RB) convection, focusing on the role of thermal conductivity ? of porous media, which ranges from 0.1 to 50 relative to the fluid. The simulation is carried out in a square RB cell with the Rayleigh number Ra ranging from 107 to 109 and the Prandtl number Pr fixed at 4.3. The porosity of the system is fixed at F = 0.812, with the porous media modelled by a set of randomly displayed circular obstacles. For a fixed Ra, the increase of conductivity shows a small effect on the total heat transfer, slightly depressing the Nusselt number. The limited influence comes from the small number of obstacles contacting with thermal plumes in the system as well as the counteraction of the increased plume area and the depressed plume strength. The study shows that the global heat transfer is insensitive to the conduction effect of separated porous media in the bulk region, which may have implications for industrial designs.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] RAYLEIGH-BENARD CONVECTION IN A SATURATED POROUS CAVITY
    WALCH, JP
    DULIEU, B
    JOURNAL DE PHYSIQUE, 1980, 41 (11): : 1245 - 1249
  • [2] Effect of radiation on Rayleigh-Benard convection in an anisotropic porous medium
    Devi, SNS
    Nagaraju, P
    Hanumanthappa, AR
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2002, 9 (03) : 163 - 171
  • [3] Lattice Boltzmann Simulation of MHD Rayleigh-Benard Convection in Porous Media
    Himika, Taasnim Ahmed
    Hassan, Sheikh
    Hasan, Md Farhad
    Molla, Md Mamun
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (11) : 9527 - 9547
  • [4] Stability analysis of Rayleigh-Benard convection in a porous medium
    Rajagopal, K. R.
    Saccomandi, G.
    Vergori, L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (01): : 149 - 160
  • [5] RAYLEIGH-BENARD CONVECTION IN A SLIGHTLY TILTED POROUS CAVITY
    WALCH, JP
    DULIEU, B
    JOURNAL DE PHYSIQUE LETTRES, 1982, 43 (04): : L103 - L107
  • [6] Heat transfer in porous media Rayleigh-Benard convection at various Prandtl numbers
    Zang, Xuehao
    Zhong, Jun
    Sun, Chao
    PHYSICS OF FLUIDS, 2023, 35 (07)
  • [7] Rayleigh-Benard percolation transition study of thermal convection in porous media: Numerical simulation and NMR experiments
    Weber, M
    Klemm, A
    Kimmich, R
    PHYSICAL REVIEW LETTERS, 2001, 86 (19) : 4302 - 4305
  • [8] Thermal modulation of Rayleigh-Benard convection
    Bhadauria, BS
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2002, 57 (9-10): : 780 - 786
  • [9] The effect of variable gravity on rotating Rayleigh-Benard convection in a sparsely packed porous layer
    Shekhar, Suman
    Ragoju, Ravi
    Yadav, Dhananjay
    HEAT TRANSFER, 2022, 51 (05) : 4187 - 4204
  • [10] Effect of inertia in Rayleigh-Benard convection
    Breuer, M
    Wessling, S
    Schmalzl, J
    Hansen, U
    PHYSICAL REVIEW E, 2004, 69 (02): : 026302 - 1