Heartbeat information prediction based on transformer model using millimetre-wave radar

被引:2
|
作者
Hu, Bojun [1 ]
Jin, Biao [1 ,2 ,4 ]
Xue, Hao [1 ]
Zhang, Zhenkai [1 ]
Xu, Zhaoyang [2 ]
Zhu, Xiaohua [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Ocean Coll, Zhenjiang, Peoples R China
[2] China Shipbldg Corp, Res Inst 723, Yangzhou, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing, Peoples R China
[4] Jiangsu Univ Sci & Technol, Ocean Coll, Zhenjiang 212003, Peoples R China
基金
中国博士后科学基金;
关键词
ECG biometrics; Fourier transforms; low-pass filters; medical signal processing; neural nets; signal processing for biometrics;
D O I
10.1049/bme2.12116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Millimetre-wave radar offers high ranging accuracy and can capture subtle vibration information of the human heart. This study proposes a heartbeat prediction method based on the transformer model using millimetre-wave radar. Firstly, the millimetre-wave radar was used to collect the heartbeat data and conduct normalisation processing. Secondly, a position coding was introduced to assign sine or cosine variables to input data and extract their relative position relationship. Subsequently, the transformer encoder was adopted to allocate attention to input data through the multi-head attention mechanism, using a mask layer before the decoding layer to prevent the leakage of future information. Finally, we employ the fully connected layer was employed in the linear decoder for regression and output the predicted results. Our experimental results demonstrate that the proposed transformer model achieves nearly 30% higher prediction accuracy than traditional long short-term memory models while improving both the prediction accuracy and convergence rate. The proposed method has great potential in predicting the heartbeat state of elderly and sick patients.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 50 条
  • [41] A Gaussian Process model for UAV localization using millimetre wave radar
    Paredes, Jose A.
    Alvarez, Fernando J.
    Hansard, Miles
    Rajab, Khalid Z.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [42] Millimetre-wave signal generation using FWM effect in SOA
    Wang, T.
    Chen, M.
    Chen, H.
    Xie, S.
    ELECTRONICS LETTERS, 2007, 43 (01) : 36 - 38
  • [43] COMPACT RANGE FOR MILLIMETRE-WAVE FREQUENCIES USING A DIELECTRIC LENS
    MENZEL, W
    HUDER, B
    ELECTRONICS LETTERS, 1984, 20 (19) : 768 - 769
  • [44] Millimetre-wave isolator based on Al substituted Ba ferrite
    Ustinov, A. B.
    Vinnik, D. A.
    Belyavskii, P. Yu
    Gudkova, S. A.
    Zakharchuk, I.
    Lahderanta, E.
    18TH INTERNATIONAL CONFERENCE PHYSICA.SPB, 2016, 769
  • [45] Implementation of millimetre-wave filter using wafer transfer technology
    Ooi, B. L.
    Wang, Y.
    Zhang, Y. Q.
    Guo, L. H.
    ELECTRONICS LETTERS, 2006, 42 (18) : 1040 - 1041
  • [46] Millimetre-wave signal generation using pulsed semiconductor lasers
    Novak, D., 1600, IEE, Stevenage, United Kingdom (30):
  • [47] Development of GaN/Si MMIC Power Amplifiers for Millimetre-wave FMCW Radar Applications
    Ramella, Chiara
    Pirola, Marco
    Colantonio, Paolo
    2022 24TH INTERNATIONAL MICROWAVE AND RADAR CONFERENCE (MIKON), 2022,
  • [48] Modelling of millimetre-wave receivers using an extended FDTD method
    Yeap, SB
    Rayner, M
    Parini, C
    ELEVENTH INTERNATIONAL CONFERENCE ON ANTENNAS AND PROPAGATION, VOLS 1 AND 2, 2001, (480): : 484 - 487
  • [49] Millimetre-Wave Phase Shifter Based on Dielectric Rod Waveguide
    Lioubtchenko, Dmitri V.
    Pousi, Patrik
    Dudorov, Sergey N.
    Raisanen, Antti V.
    Deleniv, Anatoli
    Drakinskiy, Vladimir
    Gevorgian, Spartak
    2008 EUROPEAN MICROWAVE CONFERENCE, VOLS 1-3, 2008, : 941 - +
  • [50] Power line detection in millimetre-wave radar images applying convolutional neural networks
    Xiong, Wei
    Luo, Jingsheng
    Yu, Chaopeng
    IET RADAR SONAR AND NAVIGATION, 2021, 15 (09): : 1083 - 1095