Data-Driven Chance Constrained Programs over Wasserstein Balls

被引:39
|
作者
Chen, Zhi [1 ]
Kuhn, Daniel [2 ]
Wiesemann, Wolfram [3 ]
机构
[1] City Univ Hong Kong, Coll Business, Dept Management Sci, Kowloon Tong, Hong Kong, Peoples R China
[2] Ecole Polytech Fed Lausann, Risk Analyt & Optimizat Chair, CH-1015 Lausanne, Switzerland
[3] Imperial Coll London, Imperial Coll Business Sch, South Kensington Campus, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
distributionally robust optimization; ambiguous chance constraints; Wasserstein distance; DISTRIBUTIONALLY ROBUST OPTIMIZATION;
D O I
10.1287/opre.2022.2330
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We provide an exact deterministic reformulation for data-driven, chanceconstrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand-side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the 1-norm or the ???-norm, the cone is the nonnegative orthant, and the chance-constrained program can be reformulated as a mixed-integer linear program. Our reformulation compares favorably to several state-of-the-art data-driven optimization schemes in our numerical experiments.
引用
收藏
页码:410 / 424
页数:16
相关论文
共 50 条
  • [1] On approximations of data-driven chance constrained programs over Wasserstein balls
    Chen, Zhi
    Kuhn, Daniel
    Wiesemann, Wolfram
    [J]. OPERATIONS RESEARCH LETTERS, 2023, 51 (03) : 226 - 233
  • [2] Data-Driven Chance Constrained Optimization under Wasserstein Ambiguity Sets
    Hota, Ashish R.
    Cherukuri, Ashish
    Lygeros, John
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 1501 - 1506
  • [3] Data-driven distributionally robust chance-constrained optimization with Wasserstein metric
    Ji, Ran
    Lejeune, Miguel A.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (04) : 779 - 811
  • [4] Data-driven distributionally robust chance-constrained optimization with Wasserstein metric
    Ran Ji
    Miguel A. Lejeune
    [J]. Journal of Global Optimization, 2021, 79 : 779 - 811
  • [5] Data-Driven Approximations of Chance Constrained Programs in Nonstationary Environments
    Yan, Shuhao
    Parise, Francesca
    Bitar, Eilyan
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2671 - 2676
  • [6] Data-driven distributionally robust reserve and energy scheduling over Wasserstein balls
    Yao, Li
    Wang, Xiuli
    Duan, Chao
    Guo, Jingli
    Wu, Xiong
    Zhang, Yue
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2018, 12 (01) : 178 - 189
  • [7] DATA-DRIVEN APPROXIMATION OF CONTEXTUAL CHANCE-CONSTRAINED STOCHASTIC PROGRAMS
    Rahimian, Hamed
    Pagnoncelli, Bernardo
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (03) : 2248 - 2274
  • [8] Data-driven chance constrained stochastic program
    Jiang, Ruiwei
    Guan, Yongpei
    [J]. MATHEMATICAL PROGRAMMING, 2016, 158 (1-2) : 291 - 327
  • [9] Data-driven chance constrained stochastic program
    Ruiwei Jiang
    Yongpei Guan
    [J]. Mathematical Programming, 2016, 158 : 291 - 327
  • [10] Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
    Dai, Xin
    Zhao, Liang
    He, Renchu
    Du, Wenli
    Zhong, Weimin
    Li, Zhi
    Qian, Feng
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 69 : 152 - 166