Second Chern-Einstein metrics on four-dimensional almost-Hermitian manifolds

被引:0
|
作者
Barbaro, Giuseppe [2 ]
Lejmi, Mehdi [1 ]
机构
[1] Bronx Community Coll CUNY, Dept Math, Bronx, NY 10453 USA
[2] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
来源
COMPLEX MANIFOLDS | 2023年 / 10卷 / 01期
关键词
almost-Hermitian Metrics; Chern-Einstein metrics; Hermitian connections; Weyl connection; WEYL STRUCTURES; VECTOR-FIELDS; COMPLEX; KAHLER; THEOREMS;
D O I
10.1515/coma-2022-0150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study four-dimensional second Chern-Einstein almost-Hermitian manifolds. In the compact case, we observe that under a certain hypothesis, the Riemannian dual of the Lee form is a Killing vector field. We use that observation to describe four-dimensional compact second Chern-Einstein locally conformally symplectic manifolds, and we give some examples of such manifolds. Finally, we study the second Chern-Einstein problem on unimodular almost-abelian Lie algebras, classifying those that admit a left-invariant second Chern-Einstein metric with a parallel non-zero Lee form.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Three- and Four-Dimensional Einstein-like Manifolds and Homogeneity
    Peter Bueken
    Lieven Vanhecke
    Geometriae Dedicata, 1999, 75 : 123 - 136
  • [42] Conformally Einstein and Bach-flat four-dimensional homogeneous manifolds
    Calvino-Louzao, E.
    Garcia-Martinez, X.
    Garcia-Rio, E.
    Gutierrez-Rodriguez, I.
    Vazquez-Lorenzo, R.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 130 : 347 - 374
  • [43] On Holonomy Algebras of Four-Dimensional Generalized Quasi-Einstein Manifolds
    Bahar Kırık
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2019, 89 : 711 - 719
  • [44] Selfdual Einstein Hermitian Four-Manifolds
    Apostolov, Vestislav
    Gauduchon, Paul
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2002, 1 (01) : 203 - 243
  • [45] Volume-preserving geodesic symmetries on four-dimensional Hermitian Einstein spaces
    Cho, JT
    Sekigawa, K
    Vanhecke, L
    NAGOYA MATHEMATICAL JOURNAL, 1997, 146 : 13 - 29
  • [46] Four-dimensional topological Anderson insulator with an emergent second Chern number
    Chen, Rui
    Yi, Xiao-Xia
    Zhou, Bin
    PHYSICAL REVIEW B, 2023, 108 (08)
  • [47] Four-dimensional Floquet topological insulator with an emergent second Chern number
    Liu, Zheng-Rong
    Chen, Rui
    Zhou, Bin
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [48] Hermitian metrics with vanishing second Chern Ricci curvature
    Broder, Kyle
    Pulemotov, Artem
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (01) : 38 - 47
  • [49] Hypercomplex structures with Hermitian-Norden metrics on four-dimensional Lie algebras
    Manev, Mancho
    JOURNAL OF GEOMETRY, 2014, 105 (01) : 21 - 31
  • [50] Pseudo-Chern Classes and Opposite Chern Classes of Indefinite Almost Hermitian Manifolds
    A. Bonome
    R. Castro
    E. García-Río
    L. M. Hervella
    Y. Matsushita
    Acta Mathematica Hungarica, 1997, 75 : 299 - 316