Second Chern-Einstein metrics on four-dimensional almost-Hermitian manifolds

被引:0
|
作者
Barbaro, Giuseppe [2 ]
Lejmi, Mehdi [1 ]
机构
[1] Bronx Community Coll CUNY, Dept Math, Bronx, NY 10453 USA
[2] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
来源
COMPLEX MANIFOLDS | 2023年 / 10卷 / 01期
关键词
almost-Hermitian Metrics; Chern-Einstein metrics; Hermitian connections; Weyl connection; WEYL STRUCTURES; VECTOR-FIELDS; COMPLEX; KAHLER; THEOREMS;
D O I
10.1515/coma-2022-0150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study four-dimensional second Chern-Einstein almost-Hermitian manifolds. In the compact case, we observe that under a certain hypothesis, the Riemannian dual of the Lee form is a Killing vector field. We use that observation to describe four-dimensional compact second Chern-Einstein locally conformally symplectic manifolds, and we give some examples of such manifolds. Finally, we study the second Chern-Einstein problem on unimodular almost-abelian Lie algebras, classifying those that admit a left-invariant second Chern-Einstein metric with a parallel non-zero Lee form.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Remarks on Chern-Einstein Hermitian metrics
    Angella, Daniele
    Calamai, Simone
    Spotti, Cristiano
    MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (3-4) : 1707 - 1722
  • [2] Four-dimensional almost Kahler Einstein and *-Einstein manifolds
    Oguro, T
    Sekigawa, K
    GEOMETRIAE DEDICATA, 1998, 69 (01) : 91 - 112
  • [3] Homogeneous almost-Kahler manifolds and the Chern-Einstein equation
    Alekseevsky, Dmitri V.
    Podesta, Fabio
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 831 - 846
  • [4] Four-Dimensional Almost Kähler Einstein and *-Einstein Manifolds
    Takashi Oguro
    Kouei Sekigawa
    Geometriae Dedicata, 1998, 69 : 91 - 112
  • [5] Product of Almost-Hermitian Manifolds
    Xu-Qian Fan
    Luen-Fai Tam
    Chengjie Yu
    The Journal of Geometric Analysis, 2014, 24 : 1425 - 1446
  • [6] Product of Almost-Hermitian Manifolds
    Fan, Xu-Qian
    Tam, Luen-Fai
    Yu, Chengjie
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (03) : 1425 - 1446
  • [8] Hodge theory on almost-Hermitian manifolds
    Tardini, Nicoletta
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2022, 13 (02): : 419 - 437
  • [9] An exceptional example of twistor spaces of four-dimensional almost Hermitian manifolds
    Inoue, Yoshinari
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (01): : 179 - 185
  • [10] On four-dimensional Einstein manifolds
    LeBrun, C
    GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 109 - 121