Chitosan-based hydrogel dressings for diabetic wound healing via promoting M2 macrophage-polarization

被引:29
|
作者
Wei, Xuelian [1 ]
Liu, Caikun [2 ]
Li, Zhiqian [1 ]
Gu, Zhengxiang [1 ]
Yang, Junxiao [3 ]
Luo, Kui [1 ,4 ]
机构
[1] Sichuan Univ, West China Hosp,State Key Lab Biotherapy, Huaxi MR Res Ctr HMRRC,Dept Radiol, Frontiers Sci Ctr Dis Related Mol Network, Chengdu 610041, Peoples R China
[2] South China Univ Technol, Sch Biomed Sci & Engn, Guangzhou Int Campus, Guangzhou 511442, Peoples R China
[3] Southwest Univ Sci & Technol, State Key Lab Environm friendly Energy Mat, Mianyang 621010, Peoples R China
[4] Chinese Acad Med Sci, Res Unit Psychoradiol, Funct & Mol Imaging Key Lab Sichuan Prov, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
Catechol functional chitosan; Vanillin; Chronic wounds; Antibacterial; Antioxidant; Anti-inflammatory; TISSUE-REPAIR; VANILLIN; DELIVERY; DESIGN;
D O I
10.1016/j.carbpol.2024.121873
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A long-term inflammatory phase of diabetic wounds is the primary cause to prevent their effective healing. Bacterial infection, excess reactive oxygen species (ROS), especially failure of M2-phenotype macrophage polarization can hinder the transition of diabetic wounds from an inflammation phase to a proliferation one. Herein, a chitosan-based hydrogel dressing with the ability of regulating M2 macrophage polarization was reported. The PAAc/CFCS-Vanillin hydrogel dressing was synthesized by one step thermal polymerization of catechol-functionalized chitosan (CFCS), acrylic acid, catechol functional methacryloyl chitosan-silver nanoparticles (CFMC-Ag NPs) and bioactive vanillin. The PAAc/CFCS-Vanillin hydrogel possessed sufficient mechanical strength and excellent adhesion properties, which helped rapidly block bleeding of wounds. Thanks to CFCS, CFMC-Ag NPs and vanillin in the hydrogel, it displayed excellent antibacterial infection in the wounds. Vanillin helped scavenge excess ROS and regulate the levels of inflammatory factors to facilitate the polarization of macrophages into the M2 phenotype. A full-thickness skin defect diabetic wound model showed that the wounds treated by the PAAc/CFCS-Vanillin hydrogel exhibited the smallest wound area, and superior granulation tissue regeneration, remarkable collagen deposition, and angiogenesis were observed in the wound tissue. Therefore, the PAAc/CFCS-Vanillin hydrogel could hold promising potential as a dressing for the treatment of diabetic chronic wounds.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles - In vitro study
    Nesovic, Katarina
    Jankovic, Ana
    Radetic, Tamara
    Vukasinovic-Sekulic, Maja
    Kojic, Vesna
    Zivkovic, Ljiljana
    Peric-Grujic, Aleksandra
    Rhee, Kyong Yop
    Miskovic-Stankovic, Vesna
    EUROPEAN POLYMER JOURNAL, 2019, 121
  • [32] Quercetin Promotes Diabetic Wound Healing via Switching Macrophages From M1 to M2 Polarization
    Fu, Jia
    Huang, Jingjuan
    Lin, Man
    Xie, Tingting
    You, Tianhui
    JOURNAL OF SURGICAL RESEARCH, 2020, 246 : 213 - 223
  • [33] IL-25 improves diabetic wound healing through stimulating M2 macrophage polarization and fibroblast activation
    Li, Shiyan
    Ding, Xiaofeng
    Zhang, Hao
    Ding, Youjun
    Tan, Qian
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2022, 106
  • [34] Preclinical study of engineering MSCs promoting diabetic wound healing and other inflammatory diseases through M2 polarization
    Wu, Di
    Liu, Rencun
    Cen, Xiaotong
    Dong, Wanwen
    Chen, Qing
    Lin, Jiali
    Wang, Xia
    Ling, Yixia
    Mao, Rui
    Sun, Haitao
    Huang, Rui
    Su, Huanxing
    Xu, Hongjie
    Qin, Dajiang
    STEM CELL RESEARCH & THERAPY, 2025, 16 (01)
  • [35] Resveratrol accelerates wound healing by inducing M2 macrophage polarisation in diabetic mice
    Ding, Youjun
    Yang, Ping
    Li, Shiyan
    Zhang, Hao
    Ding, Xiaofeng
    Tan, Qian
    PHARMACEUTICAL BIOLOGY, 2022, 60 (01) : 2328 - 2337
  • [36] A TA/Cu2+Nanoparticle Enhanced Carboxymethyl Chitosan-Based Hydrogel Dressing with Antioxidant Properties and Promoting Wound Healing
    Huang, Yongjun
    Chen, Yong
    Cheng, Guoyun
    Li, Wenqiang
    Zhang, Hongan
    Yu, Chaoqun
    Fang, Jia
    Zuo, Jieyi
    Li, Ying
    Xu, Lei
    Sun, Dawei
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2024, 19 : 231 - 245
  • [37] A Smart MMP-9-responsive Hydrogel Releasing M2 Macrophage-derived Exosomes for Diabetic Wound Healing
    Meng, Hao
    Su, Jianlong
    Shen, Qi
    Hu, Wenzhi
    Li, Pinxue
    Guo, Kailu
    Liu, Xi
    Ma, Kui
    Zhong, Weicheng
    Chen, Shengqiu
    Ma, Liqian
    Hao, Yaying
    Chen, Junli
    Jiang, Yufeng
    Li, Linlin
    Fu, Xiaobing
    Zhang, Cuiping
    ADVANCED HEALTHCARE MATERIALS, 2025,
  • [38] Surfactin-reinforced gelatin methacrylate hydrogel accelerates diabetic wound healing by regulating the macrophage polarization and promoting angiogenesis
    Yan, Lu
    Han, Kai
    Pang, Bing
    Jin, Han
    Zhao, Xixi
    Xu, Xiaoguang
    Jiang, Chunmei
    Cui, Ning
    Lu, Tingli
    Shi, Junling
    CHEMICAL ENGINEERING JOURNAL, 2021, 414
  • [39] Chitosan-based mussel-inspired hydrogel for rapid self-healing and high adhesion of tissue adhesion and wound dressings
    Yang, Yongyan
    Ma, Ying
    Wang, Jingfei
    You, Liru
    Zhang, Ruiting
    Meng, Qingye
    Zhong, Shuangling
    He, Wenqi
    Cui, Xuejun
    CARBOHYDRATE POLYMERS, 2023, 316
  • [40] Apigenin accelerates wound healing in diabetic mice by promoting macrophage M2-type polarization via increasing miR-21 expression
    Li, Ke
    Wu, Lijun
    Jiang, Jingting
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2024, 479 (11) : 3119 - 3127