Sequence-Aware Graph Neural Network Incorporating Neighborhood Information for Session-Based Recommendation

被引:0
|
作者
Huang, Liya [1 ]
Li, Ran [2 ]
Lei, Jingsheng [2 ]
Ji, Yuan [1 ]
Feng, Guanglu [1 ]
Shi, Wenbing [2 ]
Yang, Shengying [2 ]
机构
[1] Guizhou Power Grid Co Ltd, Informat Ctr, Jiefang Rd, Guiyang 550800, Guizhou, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, liuhe Rd, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Sequential dependency; Graph neural networks; Attention mechanism; Session-based recommendation;
D O I
10.1007/s44196-024-00408-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Session-based recommendation is an important part of many e-commerce websites. Its purpose is to make recommendations based on the interaction behavior of anonymous users in a short period of time. Graph neural network can capture complex interactions in sessions, and they are a class of methods with better performance among existing session-based recommendation models. However, most existing models only learn item features for a single session. At the same time, GNNs are not good at capturing long-distance dependencies in a session, which leads to limited performance improvements for them. To address this deficiency, we propose sequence-aware graph neural network incorporating neighborhood information, named SAN-GNN. We construct a session graph and a neighborhood graph to learn item representations. For neighborhood graph, we propose a neighborhood Information extractor for the neighborhood graph to learn the neighbor information of nodes on the neighborhood graph. For the graph model of the session layer, we propose a session graph attention(SGA) module to learn the item representation of the target session. SGA uses Ta-LSTM to learn sequential dependencies in the target session and uses GCN with an integrated attention mechanism to learn node feature relevant to the target item. Exhaustive experiments on three public real-world datasets show that SAN-GNN outperforms the most advanced existing session-based method.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Global and session item graph neural network for session-based recommendation
    Jinfang Sheng
    Jiafu Zhu
    Bin Wang
    Zhendan Long
    Applied Intelligence, 2023, 53 : 11737 - 11749
  • [22] Intent-Aware Graph Neural Networks for Session-based Recommendation
    Xu, Haoyu
    Huang, Feihu
    Peng, Jian
    Xu, Wenzheng
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [23] Spatiotemporal-aware Session-based Recommendation with Graph Neural Networks
    Li, Yinfeng
    Gao, Chen
    Du, Xiaoyi
    Wei, Huazhou
    Luo, Hengliang
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1209 - 1218
  • [24] Context-aware Session-based Recommendation with Graph Neural Networks
    Zhang, Zhihui
    Yu, Jianxiang
    Li, Xiang
    2023 IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH, ICKG, 2023, : 35 - 44
  • [25] A Survey on Session-Based Recommendation Methods with Graph Neural Network
    Zhang X.
    Zhu N.
    Guo Y.
    Data Analysis and Knowledge Discovery, 2024, 8 (02) : 1 - 16
  • [26] DGNN: Denoising graph neural network for session-based recommendation
    Dai, Jiuqian
    Yuan, Weihua
    Bao, Chen
    Zhang, Zhijun
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 824 - 831
  • [27] Multi-session aware hypergraph neural network for session-based recommendation
    Yunbo Rao
    Tongze Mu
    Shaoning Zeng
    Junming Xue
    Jinhua Liu
    Multimedia Tools and Applications, 2024, 83 : 12757 - 12774
  • [28] Multi-session aware hypergraph neural network for session-based recommendation
    Rao, Yunbo
    Mu, Tongze
    Zeng, Shaoning
    Xue, Junming
    Liu, Jinhua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 12757 - 12774
  • [29] Multi-level category-aware graph neural network for session-based recommendation
    Zhang, Zhu
    Yang, Bo
    Xu, Hao
    Hu, Wang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [30] BA-GNN: Behavior-aware graph neural network for session-based recommendation
    Liang, Yongquan
    Song, Qiuyu
    Zhao, Zhongying
    Zhou, Hui
    Gong, Maoguo
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (06)