Machine Learning for Precise Rice Variety Classification in Tropical Environments Using UAV-Based Multispectral Sensing

被引:2
|
作者
Wijayanto, Arif K. [1 ,2 ]
Junaedi, Ahmad [3 ]
Sujaswara, Azwar A. [4 ]
Khamid, Miftakhul B. R. [3 ,5 ]
Prasetyo, Lilik B. [1 ]
Hongo, Chiharu [6 ]
Kuze, Hiroaki [6 ]
机构
[1] IPB Univ, Fac Forestry & Environm, Dept Forest Resources Conservat & Ecotourism, Bogor 16680, Indonesia
[2] IPB Univ, Environm Res Ctr, Bogor 16680, Indonesia
[3] IPB Univ, Fac Agr, Dept Agron & Hort, Bogor 16680, Indonesia
[4] Kyoto Univ, Grad Sch Agr, Kyoto 6068502, Japan
[5] Univ Singaperbangsa Karawang, Fac Agr, Program Agrotechnol, Karawang 41361, Indonesia
[6] Chiba Univ, Ctr Environm Remote Sensing CEReS, Chiba 2638522, Japan
来源
AGRIENGINEERING | 2023年 / 5卷 / 04期
关键词
drone; neural network; precision agriculture; paddy; remote sensing; NEURAL-NETWORK; VEGETATION; PERFORMANCE; YIELD; NDVI;
D O I
10.3390/agriengineering5040123
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
An efficient assessment of rice varieties in tropical regions is crucial for selecting cultivars suited to unique environmental conditions. This study explores machine learning algorithms that leverage multispectral sensor data from UAVs to evaluate rice varieties. It focuses on three paddy rice types at different ages (six, nine, and twelve weeks after planting), analyzing data from four spectral bands and vegetation indices using various algorithms for classification. The results show that the neural network (NN) algorithm is superior, achieving an area under the curve value of 0.804. The twelfth week post-planting yielded the most accurate results, with green reflectance the dominant predictor, surpassing the traditional vegetation indices. This study demonstrates the rapid and effective classification of rice varieties using UAV-based multispectral sensors and NN algorithms to enhance agricultural practices and global food security.
引用
收藏
页码:2000 / 2019
页数:20
相关论文
共 50 条
  • [1] UAV-based multispectral image analytics and machine learning for predicting crop nitrogen in rice
    Khose, Suyog Balasaheb
    Mailapalli, Damodhara Rao
    [J]. GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [2] Water Chlorophyll a Estimation Using UAV-Based Multispectral Data and Machine Learning
    Zhao, Xiyong
    Li, Yanzhou
    Chen, Yongli
    Qiao, Xi
    Qian, Wanqiang
    [J]. DRONES, 2023, 7 (01)
  • [3] IDENTIFICATION OF APHIDS USING MACHINE LEARNING CLASSIFIERS ON UAV-BASED MULTISPECTRAL DATA
    Guimaraes, Nathalie
    Padua, Luis
    Sousa, Joaquim J.
    Bento, Albino
    Couto, Pedro
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3462 - 3465
  • [4] Ensemble of Machine Learning Algorithms for Rice Grain Yield Prediction Using UAV-Based Remote Sensing
    Sarkar, Tapash Kumar
    Roy, Dilip Kumar
    Kang, Ye Seong
    Jun, Sae Rom
    Park, Jun Woo
    Ryu, Chan Seok
    [J]. JOURNAL OF BIOSYSTEMS ENGINEERING, 2024, 49 (01) : 1 - 19
  • [5] Almond cultivar identification using machine learning classifiers applied to UAV-based multispectral data
    Guimaraes, Nathalie
    Padua, Luis
    Sousa, Joaquim J.
    Bento, Albino
    Couto, Pedro
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (05) : 1533 - 1555
  • [6] Biomass estimation of spring wheat with machine learning methods using UAV-based multispectral imaging
    Atkinson Amorim, Joao Gustavo
    Schreiber, Lincoln Vinicius
    Quadros de Souza, Mirayr Raul
    Negreiros, Marcelo
    Susin, Altamiro
    Bredemeier, Christian
    Trentin, Carolina
    Vian, Andre Luis
    Andrades-Filho, Clodis de Oliveira
    Doering, Dionisio
    Parraga, Adriane
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (13) : 4758 - 4773
  • [7] Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data
    Padua, Luis
    Marques, Pedro
    Martins, Luis
    Sousa, Antonio
    Peres, Emanuel
    Sousa, Joaquim J.
    [J]. REMOTE SENSING, 2020, 12 (18)
  • [8] UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area
    de Andrade, Oto Barbosa
    Montenegro, Abelardo Antonio de Assuncao
    Neto, Moises Alves da Silva
    de Sousa, Lizandra de Barros
    Almeida, Thayna Alice Brito
    de Lima, Joao Luis Mendes Pedroso
    de Carvalho, Ailton Alves
    da Silva, Marcos Vinicius
    de Medeiros, Victor Wanderley Costa
    Soares, Rodrigo Gabriel Ferreira
    da Silva, Thieres George Freire
    Vilar, Barbara Pinto
    [J]. AGRIENGINEERING, 2024, 6 (01): : 509 - 525
  • [9] Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data
    Mia, Md. Suruj
    Tanabe, Ryoya
    Habibi, Luthfan Nur
    Hashimoto, Naoyuki
    Homma, Koki
    Maki, Masayasu
    Matsui, Tsutomu
    Tanaka, Takashi S. T.
    [J]. REMOTE SENSING, 2023, 15 (10)
  • [10] UAV-Based Disease Detection in Palm Groves of Phoenix canariensis Using Machine Learning and Multispectral Imagery
    Casas, Enrique
    Arbelo, Manuel
    Moreno-Ruiz, Jose A.
    Hernandez-Leal, Pedro A.
    Reyes-Carlos, Jose A.
    [J]. REMOTE SENSING, 2023, 15 (14)