UAV-based multispectral image analytics and machine learning for predicting crop nitrogen in rice

被引:0
|
作者
Khose, Suyog Balasaheb [1 ]
Mailapalli, Damodhara Rao [1 ]
机构
[1] Indian Inst Technol Kharagpur, Agr & Food Engn Dept, Kharagpur, W Bengal, India
关键词
Unmanned aerial vehicle; rice; crop nitrogen; multispectral imageries; machine learning; LEAF CHLOROPHYLL CONCENTRATION; RED EDGE; PRECISION AGRICULTURE; VEGETATION INDEXES; REMOTE ESTIMATION; SPAD VALUES; REFLECTANCE; LEAVES; PLANTS; POSITION;
D O I
10.1080/10106049.2024.2373867
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Assessment of crop nitrogen status is essential for efficient crop growth management. Existing nitrogen measurements are accurate but destructive, laborious, and time-consuming. Therefore, the soil plant analysis development (SPAD) meter approach is commonly used to address these challenges along with location-specific measurements. The study aims to develop a robust machine learning-based model for predicting rice crop SPAD values using spectral data and to generate spatial maps of SPAD values and nitrogen content. The SPAD meter data, UAV-based multispectral images, and spectroradiometer-based data were collected during Rabi 2021/22 and 2022/23 seasons. The red and red-edge bands, Normalized Difference Vegetation Index, and Normalized Pigment Chlorophyll Index correlated well with SPAD values. The random forest regressor model performed well with UAV-based data compared to support vector regression and partial least square regression and achieved good accuracy with the ground truth spectroradiometer data. This generalized model demonstrates adaptability in precisely assessing crop nitrogen status.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] UAV-based multispectral image analytics for generating crop coefficient maps for rice
    Suyog Balasaheb Khose
    Damodhara Rao Mailapalli
    Sudarsan Biswal
    Chandranath Chatterjee
    [J]. Arabian Journal of Geosciences, 2022, 15 (22)
  • [2] Machine Learning for Precise Rice Variety Classification in Tropical Environments Using UAV-Based Multispectral Sensing
    Wijayanto, Arif K.
    Junaedi, Ahmad
    Sujaswara, Azwar A.
    Khamid, Miftakhul B. R.
    Prasetyo, Lilik B.
    Hongo, Chiharu
    Kuze, Hiroaki
    [J]. AGRIENGINEERING, 2023, 5 (04): : 2000 - 2019
  • [3] IDENTIFICATION OF APHIDS USING MACHINE LEARNING CLASSIFIERS ON UAV-BASED MULTISPECTRAL DATA
    Guimaraes, Nathalie
    Padua, Luis
    Sousa, Joaquim J.
    Bento, Albino
    Couto, Pedro
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3462 - 3465
  • [4] Water Chlorophyll a Estimation Using UAV-Based Multispectral Data and Machine Learning
    Zhao, Xiyong
    Li, Yanzhou
    Chen, Yongli
    Qiao, Xi
    Qian, Wanqiang
    [J]. DRONES, 2023, 7 (01)
  • [5] Leaf Nitrogen Concentration and Plant Height Prediction for Maize Using UAV-Based Multispectral Imagery and Machine Learning Techniques
    Osco, Lucas Prado
    Marcato Junior, Jose, Jr.
    Marques Ramos, Ana Paula
    Garcia Furuya, Danielle Elis
    Santana, Dthenifer Cordeiro
    Ribeiro Teodoro, Larissa Pereira
    Goncalves, Wesley Nunes
    Rojo Baio, Fabio Henrique
    Pistori, Hemerson
    da Silva Junior, Carlos Antonio, Jr.
    Teodoro, Paulo Eduardo
    [J]. REMOTE SENSING, 2020, 12 (19) : 1 - 17
  • [6] UAV-Based Hyperspectral and Ensemble Machine Learning for Predicting Yield in Winter Wheat
    Li, Zongpeng
    Chen, Zhen
    Cheng, Qian
    Duan, Fuyi
    Sui, Ruixiu
    Huang, Xiuqiao
    Xu, Honggang
    [J]. AGRONOMY-BASEL, 2022, 12 (01):
  • [7] UAV-based multispectral and thermal cameras to predict soil water content - A machine learning approach
    Bertalan, Laszlo
    Holb, Imre
    Pataki, Angelika
    Szabo, Gergely
    Szaloki, Annamaria Kupasne
    Szabo, Szilard
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 200
  • [8] Almond cultivar identification using machine learning classifiers applied to UAV-based multispectral data
    Guimaraes, Nathalie
    Padua, Luis
    Sousa, Joaquim J.
    Bento, Albino
    Couto, Pedro
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (05) : 1533 - 1555
  • [9] Biomass estimation of spring wheat with machine learning methods using UAV-based multispectral imaging
    Atkinson Amorim, Joao Gustavo
    Schreiber, Lincoln Vinicius
    Quadros de Souza, Mirayr Raul
    Negreiros, Marcelo
    Susin, Altamiro
    Bredemeier, Christian
    Trentin, Carolina
    Vian, Andre Luis
    Andrades-Filho, Clodis de Oliveira
    Doering, Dionisio
    Parraga, Adriane
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (13) : 4758 - 4773
  • [10] Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data
    Padua, Luis
    Marques, Pedro
    Martins, Luis
    Sousa, Antonio
    Peres, Emanuel
    Sousa, Joaquim J.
    [J]. REMOTE SENSING, 2020, 12 (18)