Deep-Blue Narrowband Hetero[6]helicenes Showing Circularly Polarized Thermally Activated Delayed Fluorescence Toward High-Performance OLEDs

被引:53
|
作者
Ye, Zeyuan [1 ]
Wu, Han [1 ]
Xu, Yulin [1 ]
Hua, Tao [1 ]
Chen, Guohao [1 ]
Chen, Zhanxiang [1 ]
Yin, Xiaojun [1 ]
Huang, Manli [1 ]
Xu, Ke [1 ]
Song, Xiufang [1 ]
Huang, Zhongyan [1 ]
Lv, Xialei [1 ]
Miao, Jingsheng [1 ]
Cao, Xiaosong [1 ]
Yang, Chuluo [1 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen Key Lab New Informat Display & Storage M, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
circularly polarized thermally activated delayed fluorescence; deep-blue emission; helicene; multiple resonance; narrowband electroluminescence; MULTIPLE BORYLATION; ELECTROLUMINESCENCE; COMPLEXES; ACCESS;
D O I
10.1002/adma.202308314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Helicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light-emitting diodes (CP-OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet-harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene-based emitters that is strategically engineered through the helical extension of a deep-blue double-boron-based multiple resonance thermally activated delayed fluorescence (MR-TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep-blue emission and MR-TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 x 10-3. Exploiting these merits, devices incorporating the chiral dopants demonstrate deep-blue emission within the Broadcast Service Television 2020 color-gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors' findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high-definition displays. A helical extension strategy is introduced to engineer deep-blue hetero[6]helicene-based emitters for circularly polarized OLEDs. Besides satisfactory chiroptical performance, this strategy endows the emitters with enhanced quantum yield and narrower emission bands compared to their precursor. The devices display record efficiencies, high color purity, and distinct circularly polarized electroluminescence, marking a significant advance in chiroptical materials for high-definition displays.image
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Design of a Novel Selenium-Containing Spiro Donor for Narrowband Blue Thermally Activated Delayed Fluorescence Emitters in OLEDs
    Li, Mengke
    Li, Rongzhe
    Li, Zhizhi
    Chen, Zijian
    Liu, Denghui
    Yang, Zhihai
    Xie, Hongwei
    Liu, Kunkun
    Su, Shi-Jian
    ADVANCED OPTICAL MATERIALS, 2024,
  • [32] Intramolecular charge transfer assisted multi-resonance thermally activated delayed fluorescence emitters for high-performance solution-processed narrowband OLEDs
    Yang, Zhi
    Li, Shengyu
    Hua, Lei
    Ying, Shian
    Liu, Yuchao
    Ren, Zhongjie
    Yan, Shouke
    CHEMICAL SCIENCE, 2025, 16 (09) : 3904 - 3915
  • [33] Phosphorus Central Chiral Multiresonance Thermally Activated Delayed Fluorescence Emitter Towards Narrowband and Efficient Circularly Polarized Electroluminescence
    Liao, Xiang-Ji
    Xing, Shuai
    Hu, Jia-Jun
    Wang, Xiang-Zhi
    Zheng, You-Xuan
    CCS CHEMISTRY, 2024,
  • [34] Highly Efficient Electroluminescence from Narrowband Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers
    Xu, Yincai
    Wang, Qingyang
    Cai, Xinliang
    Li, Chenglong
    Wang, Yue
    ADVANCED MATERIALS, 2021, 33 (21)
  • [35] Efficient deep-blue thermally activated delayed fluorescence emitters based on diphenylsulfone-derivative acceptor
    Sun, Shuaiqiang
    Guo, Runda
    Zhang, Qing
    Lv, Xialei
    Leng, Panpan
    Wang, Yaxiong
    Huang, Zhi
    Wang, Lei
    DYES AND PIGMENTS, 2020, 178
  • [36] Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters
    Cui, Lin-Song
    Nomura, Hiroko
    Geng, Yan
    Kim, Jong Uk
    Nakanotani, Hajime
    Adachi, Chihaya
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (06) : 1571 - 1575
  • [37] Deep-blue emission and thermally activated delayed fluorescence via Dimroth rearrangement of tris(triazolo)triazines
    Hojo, Ryoga
    Mayder, Don M.
    Hudson, Zachary M.
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (37) : 13871 - 13877
  • [38] Efficient thermally activated delayed fluorescence materials from symmetric anthraquinone derivatives for high-performance red OLEDs
    Bai, Zhentao
    Li, Xiangrui
    Wang, Min
    Xu, Letian
    Jiang, Ruming
    Tang, Ben Zhong
    Zhao, Zujin
    Organic Electronics, 135
  • [39] Efficient thermally activated delayed fluorescence materials from symmetric anthraquinone derivatives for high-performance red OLEDs
    Bai, Zhentao
    Li, Xiangrui
    Wang, Min
    Xu, Letian
    Jiang, Ruming
    Tang, Ben Zhong
    Zhao, Zujin
    ORGANIC ELECTRONICS, 2024, 135
  • [40] Performance improvement of blue thermally activated delayed fluorescence OLEDs via vapor annealing by high boiling point solvent
    Zheng, Yanqiong
    Chen, Wei'an
    Chen, Yuhuan
    Chen, Juncong
    Zhao, Bingjia
    Zhang, Qingyu
    Li, Xifeng
    CHEMICAL ENGINEERING JOURNAL, 2023, 464