Deep learning based data augmentation for large-scale mineral image recognition and classification

被引:6
|
作者
Liu, Yang [1 ]
Wang, Xueyi [1 ]
Zhang, Zelin [3 ]
Deng, Fang [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, State Key Lab Autonomous Intelligent Unmanned Syst, Beijing 100081, Peoples R China
[2] Beijing Inst Technol Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
[3] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Ore sorting; Large-scale image classification; Generative adversarial networks; Data augmentation; CONVOLUTIONAL NEURAL-NETWORKS; ROCK;
D O I
10.1016/j.mineng.2023.108411
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Vision-based mineral image recognition and classification is a proven solution for autonomous unmanned ore sorting. Although accurate identification can be achieved by training models offline using large-scale datasets, the lack of sufficient labeled images still limits the accessibility and exploration of high-performance deep learning models. To address the above issues, referring to the generative adversarial networks, three different deep learning-based mineral image data augmentation models are proposed in this work. The experimental results show that the proposed models can generate mineral images with high fidelity and have high similarity to the ground truth in terms of texture, color and shape. Compared with classic data augmentation methods, proposed ones can better optimize downstream sorting tasks: the accuracy of ResNet101, ResNet50, InceptionV3 and VGG19 is improved by 18.52%, 9.94%, 4.39% and 2.39%, respectively. Finally, this work also presents a monolithic three-stage system workflow for large-scale mineral image recognition and classification.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Image data augmentation techniques based on deep learning: A survey
    Zeng W.
    Mathematical Biosciences and Engineering, 2024, 21 (06) : 6190 - 6224
  • [42] Hierarchical learning of large-margin metrics for large-scale image classification
    Lei, Hao
    Mei, Kuizhi
    Xin, Jingmin
    Dong, Peixiang
    Fan, Jianping
    NEUROCOMPUTING, 2016, 208 : 46 - 58
  • [43] Automatic large-scale data acquisition via crowdsourcing for crosswalk classification: A deep learning approach
    Berriel, Rodrigo F.
    Rossi, Franco Schmidt
    de Souza, Alberto F.
    Oliveira-Santos, Thiago
    COMPUTERS & GRAPHICS-UK, 2017, 68 : 32 - 42
  • [44] Problems in Large-Scale Image Classification
    Guo, Yuchen
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 5038 - 5039
  • [45] Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification
    Xiao, Tianjun
    Zhang, Jiaxing
    Yang, Kuiyuan
    Peng, Yuxin
    Zhang, Zheng
    PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 177 - 186
  • [46] Attention deep learning-based large-scale learning classifier for Cassava leaf disease classification
    Ravi, Vinayakumar
    Acharya, Vasundhara
    Pham, Tuan D.
    EXPERT SYSTEMS, 2022, 39 (02)
  • [47] Large-scale underwater fish recognition via deep adversarial learning
    Zhang, Zhixue
    Du, Xiujuan
    Jin, Long
    Wang, Shuqiao
    Wang, Lijuan
    Liu, Xiuxiu
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (02) : 353 - 379
  • [48] Large-scale underwater fish recognition via deep adversarial learning
    Zhixue Zhang
    Xiujuan Du
    Long Jin
    Shuqiao Wang
    Lijuan Wang
    Xiuxiu Liu
    Knowledge and Information Systems, 2022, 64 : 353 - 379
  • [49] Deep Learning for Large-Scale Traffic-Sign Detection and Recognition
    Tabernik, Domen
    Skocaj, Danijel
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (04) : 1427 - 1440
  • [50] Supervised and Unsupervised Parallel Subspace Learning for Large-Scale Image Recognition
    Jing, Xiao-Yuan
    Li, Sheng
    Zhang, David
    Yang, Jian
    Yang, Jing-Yu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2012, 22 (10) : 1497 - 1511