Combining frequency transformer and CNNs for medical image segmentation

被引:1
|
作者
Labbihi, Ismayl [1 ]
El Meslouhi, Othmane [2 ]
Benaddy, Mohamed [1 ]
Kardouchi, Mustapha [3 ]
Akhloufi, Moulay [3 ]
机构
[1] Ibn Zohr Univ, Fac Sci, LabSI Lab, Agadir 80000, Morocco
[2] Cadi Ayyad Univ, Natl Sch Appl Sci, SARS Grp, Safi 46000, Morocco
[3] Univ Moncton, Dept Comp Sci, PRIME Lab, 18 Antonine Maillet Ave, Moncton, NB E1A 3E9, Canada
关键词
Medical image segmentation; Convolutional neural networks; Frequency transformers; Fourier transform; DIAGNOSIS;
D O I
10.1007/s11042-023-16279-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image segmentation is one of the most challenging and difficult tasks in digital image processing. It has many medical applications such as cancerous tumors segmentation, organ segmentation, or abnormalities segmentation. Recent techniques combining convolution-based models and transformers are proposed for automatic medical segmentation tasks. These techniques achieve good results but require much time and resources. In this paper, we propose a new model to segment medical images which combines CNNs and frequency transformers in a parallel way to minimize the number of parameters and to reduce computation time. This work presents a powerful model, composed of two main branches, able to learn global-local feature interactions which are currently in a medical image. The first branch based on Frequency Transformer (FT) employs Fourier Transform instead of multi-head attention to capture global dependencies. While a no-deeper convolutional neural network (CNN) is employed to get rich local information. With a small number of parameters, the proposed model was tested on many public medical image databases and achieves state-of-the-art results for lesion/tumor segmentation tasks.
引用
收藏
页码:21197 / 21212
页数:16
相关论文
共 50 条
  • [21] Advancements in medical image segmentation: A review of transformer models
    Kumar, S.S.
    Computers and Electrical Engineering, 2025, 123
  • [22] Transformer with progressive sampling for medical cellular image segmentation
    Jiang, Shen
    Li, Jinjiang
    Hua, Zhen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (12) : 12104 - 12126
  • [23] LiteTrans: Reconstruct Transformer with Convolution for Medical Image Segmentation
    Xu, Shuying
    Quan, Hongyan
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2021, 2021, 13064 : 300 - 313
  • [24] A parallelly contextual convolutional transformer for medical image segmentation
    Feng, Yuncong
    Su, Jianyu
    Zheng, Jian
    Zheng, Yupeng
    Zhang, Xiaoli
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 98
  • [25] Dense deep transformer for medical image segmentation: DDTraMIS
    Abhilasha Joshi
    K. K. Sharma
    Multimedia Tools and Applications, 2024, 83 : 18073 - 18089
  • [26] A combined deformable model and medical transformer algorithm for medical image segmentation
    Tang, Zhixian
    Duan, Jintao
    Sun, Yanming
    Zeng, Yanan
    Zhang, Yile
    Yao, Xufeng
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (01) : 129 - 137
  • [27] Medical Transformer: Gated Axial-Attention for Medical Image Segmentation
    Valanarasu, Jeya Maria Jose
    Oza, Poojan
    Hacihaliloglu, Ilker
    Patel, Vishal M.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I, 2021, 12901 : 36 - 46
  • [28] A combined deformable model and medical transformer algorithm for medical image segmentation
    Zhixian Tang
    Jintao Duan
    Yanming Sun
    Yanan Zeng
    Yile Zhang
    Xufeng Yao
    Medical & Biological Engineering & Computing, 2023, 61 : 129 - 137
  • [29] TC-Fuse: A Transformers Fusing CNNs Network for Medical Image Segmentation
    Geng, Peng
    Lu, Ji
    Zhang, Ying
    Ma, Simin
    Tang, Zhanzhong
    Liu, Jianhua
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (02): : 2001 - 2023
  • [30] Combining Swin Transformer With UNet for Remote Sensing Image Semantic Segmentation
    Fan, Lili
    Zhou, Yu
    Liu, Hongmei
    Li, Yunjie
    Cao, Dongpu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 11