Maniplexes with automorphism group PSL(2, q)

被引:0
|
作者
Leemans, Dimitri [1 ]
Toledo, Micael [1 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 216 Algebre & Combinatoire,Blvd Triomphe, B-1050 Brussels, Belgium
关键词
Regular maniplex; Polytope; Projective linear group; Automorphism group; POLYTOPES; MAPS;
D O I
10.1016/j.disc.2023.113527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A maniplex of rank n is a combinatorial object that generalises the notion of a rank n abstract polytope. A maniplex with the highest possible degree of symmetry is called regular. In this paper we prove that there is a rank 4 regular maniplex with automorphism group PSL2(q) for infinitely many prime powers q, and that no regular maniplex of rank n > 4 exists that has PSL2(q) as its full automorphism group.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] ON SOME LAWS IN PSL(2,Q)
    NIKOLOVA, DB
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 204 : 245 - 245
  • [32] Constructive recognition of PSL(2, q)
    Conder, MDE
    Leedham-Green, CR
    O'Brien, EA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) : 1203 - 1221
  • [33] Coprime commutators in PSL(2, q)
    Pellegrini, Marco Antonio
    Shumyatsky, Pavel
    ARCHIV DER MATHEMATIK, 2012, 99 (06) : 501 - 507
  • [34] The depth of subgroups of PSL(2, q)
    Fritzsche, Tim
    JOURNAL OF ALGEBRA, 2012, 349 (01) : 217 - 233
  • [35] Coprime commutators in PSL(2, q)
    Marco Antonio Pellegrini
    Pavel Shumyatsky
    Archiv der Mathematik, 2012, 99 : 501 - 507
  • [36] Cohomology of PSL2(q)
    Saunders, Jack
    JOURNAL OF ALGEBRA, 2022, 595 : 347 - 379
  • [37] A New Characterization of PSL(2, q) for Some q
    A. K. Asboei
    S. S. S. Amiri
    A. Iranmanesh
    Ukrainian Mathematical Journal, 2016, 67 : 1297 - 1305
  • [38] THE GENUS OF PSL2(Q)
    GLOVER, H
    SJERVE, D
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1987, 380 : 59 - 86
  • [39] PSL2(Q) AND EXTENSIONS OF Q(X)
    VOLKLEIN, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 24 (01) : 145 - 153
  • [40] PSL(2,Q) TYPE 2-COMPONENTS AND THE UN-BALANCED GROUP CONJECTURE
    HARRIS, ME
    JOURNAL OF ALGEBRA, 1981, 68 (01) : 190 - 235