Strengthened teaching-learning-based optimization algorithm for numerical optimization tasks

被引:1
|
作者
Chen, Xuefen [1 ]
Ye, Chunming [1 ]
Zhang, Yang [1 ]
Zhao, Lingwei [1 ]
Guo, Jing [1 ]
Ma, Kun [1 ]
机构
[1] Univ Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Metaheuristic; Optimization algorithm; Teaching-learning-based optimization algorithm; Teaching factor; Elite system; Cauchy mutation; GENETIC ALGORITHM; SEARCH ALGORITHM;
D O I
10.1007/s12065-023-00839-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The teaching-learning-based optimization algorithm (TLBO) is an efficient optimizer. However, it has several shortcomings such as premature convergence and stagnation at local optima. In this paper, the strengthened teaching-learning-based optimization algorithm (STLBO) is proposed to enhance the basic TLBO's exploration and exploitation properties by introducing three strengthening mechanisms: the linear increasing teaching factor, the elite system composed of new teacher and class leader, and the Cauchy mutation. Subsequently, seven variants of STLBO are designed based on the combined deployment of the three improved mechanisms. Performance of the novel STLBOs is evaluated by implementing them on thirteen numerical optimization tasks, including the seven unimodal tasks (f1-f7) and six multimodal tasks (f8-f13). The results show that STLBO7 is at the top of the list, significantly better than the original TLBO. Moreover, the remaining six variants of STLBO also outperform TLBO. Finally, a set of comparisons are implemented between STLBO7 and other advanced optimization techniques, such as HS, PSO, MFO, GA and HHO. The numerical results and convergence curves prove that STLBO7 clearly outperforms other competitors, has stronger local optimal avoidance, faster convergence speed and higher solution accuracy. All the above manifests that STLBOs has improved the search performance of TLBO. Data Availability Statements: All data generated or analyzed during this study are included in this published article (and its supplementary information files).
引用
收藏
页码:1463 / 1480
页数:18
相关论文
共 50 条
  • [21] Chaotic Teaching-Learning-Based Optimization with Levy Flight for Global Numerical Optimization
    He, Xiangzhu
    Huang, Jida
    Rao, Yunqing
    Gao, Liang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [22] Design optimization of robot grippers using teaching-learning-based optimization algorithm
    Rao, R. Venkata
    Waghmare, Gajanan
    ADVANCED ROBOTICS, 2015, 29 (06) : 431 - 447
  • [23] Multi-objective optimization using teaching-learning-based optimization algorithm
    Zou, Feng
    Wang, Lei
    Hei, Xinhong
    Chen, Debao
    Wang, Bin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (04) : 1291 - 1300
  • [24] An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems
    Rao, R. Venkata
    Patel, Vivek
    SCIENTIA IRANICA, 2013, 20 (03) : 710 - 720
  • [25] Closed-Loop Teaching-Learning-Based Optimization Algorithm for Global Optimization
    Zheng, Shuaiyin
    Ren, Ziwu
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 2120 - 2125
  • [26] An improved teaching-learning-based optimization algorithm for solving global optimization problem
    Chen, Debao
    Zou, Feng
    Li, Zheng
    Wang, Jiangtao
    Li, Suwen
    INFORMATION SCIENCES, 2015, 297 : 171 - 190
  • [27] Parameter optimization of machining processes using teaching-learning-based optimization algorithm
    Pawar, P. J.
    Rao, R. Venkata
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 67 (5-8): : 995 - 1006
  • [28] Teaching-learning-based optimization algorithm with local dimension improvement
    He J.-G.
    Peng Z.-P.
    Cui D.-L.
    Li Q.-R.
    2018, Zhejiang University (52): : 2159 - 2170
  • [29] A Teaching-Learning-Based Optimization Algorithm with Rectangle Neighborhood Structure
    He J.-G.
    Peng Z.-P.
    Lin W.-H.
    Cui D.-L.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (08): : 1768 - 1775
  • [30] A New Teaching-Learning-based Chicken Swarm Optimization Algorithm
    Deb, Sanchari
    Gao, Xiao-Zhi
    Tammi, Kari
    Kalita, Karuna
    Mahanta, Pinakeswar
    SOFT COMPUTING, 2020, 24 (07) : 5313 - 5331