Efficient parameter learning for Bayesian Network classifiers following the Apache Spark Dataframes paradigm

被引:0
|
作者
Akarepis, Ioannis [1 ]
Bompotas, Agorakis [1 ]
Makris, Christos [1 ]
机构
[1] Univ Patras, Comp Engn & Informat Dept, Univ Campus, Patras 26504, Achaia, Greece
关键词
Machine learning; Bayesian Network classifiers; Big data; Apache Spark; BIG DATA; MAPREDUCE;
D O I
10.1007/s10115-024-02096-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Every year the volume of information is growing at a high rate; therefore, more modern approaches are required to deal with such issues efficiently. Distributed systems, such as Apache Spark, offer such a modern approach, resulting in more and more machine learning models, being adapted into using distributed logic. In this paper, we propose a classification model, based on Bayesian Networks (BNs), that utilizes the distributed environment of Apache Spark using the Dataframes paradigm. This model can exploit any user-provided directed acyclic graph (DAG) that portrays the dependencies between the features of a dataset to estimate the parameters of the conditional probability distributions associated with each node in the graph to make accurate predictions. Moreover, in contrast with the majority of implementations that are only able to handle discrete features, it is also capable of efficiently handling continuous features by calculating the Gaussian probability density function.
引用
收藏
页码:4437 / 4461
页数:25
相关论文
共 50 条
  • [41] Inference and learning in multi-dimensional Bayesian network classifiers
    de Waal, Peter R.
    van der Gaag, Linda C.
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2007, 4724 : 501 - +
  • [42] Discretizing environmental data for learning Bayesian-network classifiers
    Ropero, R. F.
    Renooij, S.
    van der Gaag, L. C.
    [J]. ECOLOGICAL MODELLING, 2018, 368 : 391 - 403
  • [43] Learning Bayesian network classifiers using ant colony optimization
    Khalid M. Salama
    Alex A. Freitas
    [J]. Swarm Intelligence, 2013, 7 : 229 - 254
  • [44] An error-driven learning algorithm for Bayesian network classifiers
    Gu, P
    Zhu, QS
    Li, YF
    [J]. Proceedings of the 11th Joint International Computer Conference, 2005, : 412 - 415
  • [45] Learning Continuous Time Bayesian Network Classifiers Using MapReduce
    Villa, Simone
    Rossetti, Marco
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 62 (03): : 1 - 25
  • [46] Discriminative learning of Bayesian network classifiers via the TM algorithm
    Santafé, G
    Lozano, JA
    Larrañaga, P
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2005, 3571 : 148 - 160
  • [47] A Review of Parameter Learning Methods in Bayesian Network
    Ji, Zhiwei
    Xia, Qibiao
    Meng, Guanmin
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2015, PT III, 2015, 9227 : 3 - 12
  • [48] Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes
    François Petitjean
    Wray Buntine
    Geoffrey I. Webb
    Nayyar Zaidi
    [J]. Machine Learning, 2018, 107 : 1303 - 1331
  • [49] Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes
    Petitjean, Francois
    Buntine, Wray
    Webb, Geoffrey I.
    Zaidi, Nayyar
    [J]. MACHINE LEARNING, 2018, 107 (8-10) : 1303 - 1331
  • [50] On Resource-Efficient Bayesian Network Classifiers and Deep Neural Networks
    Roth, Wolfgang
    Pernkopf, Franz
    Schindler, Gunther
    Froening, Holger
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10297 - 10304