An Efficient Task-Parallel Pipeline Programming Framework

被引:1
|
作者
Chiu, Cheng-Hsiang [1 ]
Xiong, Zhicheng [2 ]
Guo, Zizheng [3 ]
Huang, Tsung-Wei [1 ]
Lin, Yibo [3 ]
机构
[1] Univ Wisconsin Madison, Madison, WI 53706 USA
[2] Tsinghua Univ, Beijing, Peoples R China
[3] Peking Univ, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
Task-parallel; Pipeline Parallelism; Pipeline Scheduling; CILK;
D O I
10.1145/3635035.3635037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The pipeline is a fundamental pattern to parallelize a series of stage tasks over a sequence of data in loops. Mainstream pipeline programming frameworks count on data abstractions to perform pipeline scheduling. Although this design is convenient for data-centric parallel applications, it is not efficient for algorithms that only exploit task parallelism in the pipeline. To address the limitation, we introduce a new task-parallel pipeline programming framework called Pipeflow. Pipeflow separates data abstractions and task scheduling, enabling a more efficient implementation of task-parallel pipeline algorithms than existing frameworks. We have evaluated Pipeflow on both micro-benchmarks and real-world applications. For example, in a timing analysis workload that explores pipeline parallelism to speed up the runtime performance, the Pipeflow's implementation outperforms the oneTBB's implementation up to 110.33% faster.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 50 条
  • [41] Extracting SIMD Parallelism from Recursive Task-Parallel Programs
    Ren, Bin
    Balakrishna, Shruthi
    Jo, Youngjoon
    Krishnamoorthy, Sriram
    Agrawal, Kunal
    Kulkarni, Milind
    [J]. ACM TRANSACTIONS ON PARALLEL COMPUTING, 2019, 6 (04)
  • [42] Visualization aided performance tuning of irregular task-parallel computations
    Blochinger, Wolfgang
    Kaufmann, Michael
    Siebenhaller, Martin
    [J]. Information Visualization, 2006, 5 (02) : 81 - 94
  • [43] Extending High-Level Synthesis for Task-Parallel Programs
    Chi, Yuze
    Guo, Licheng
    Lau, Jason
    Choi, Young-kyu
    Wang, Jie
    Cong, Jason
    [J]. 2021 IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2021), 2021, : 204 - 213
  • [44] Task-Parallel LU Factorization of Hierarchical Matrices using OmpSs
    Aliaga, Jose I.
    Carratala-Saez, Rocio
    Quintana-Orti, Enrique S.
    Krimann, Ronald
    [J]. 2017 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2017, : 1148 - 1157
  • [45] Energy efficiency optimization of task-parallel codes on asymmetric architectures
    Costero, Luis
    Igual, Francisco D.
    Olcoz, Katzalin
    Tirado, Francisco
    [J]. 2017 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2017, : 402 - 409
  • [46] PASTA: Programming and Automation Support for Scalable Task-Parallel HLS Programs on Modern Multi-Die FPGAs
    Khatti, Moazin
    Tian, Xingyu
    Sedigh Baroughi, Ahmad
    Raj Baranwal, Akhil
    Chi, Yuze
    Guo, Licheng
    Cong, Jason
    Fang, Zhenman
    [J]. ACM Transactions on Reconfigurable Technology and Systems, 2024, 17 (03)
  • [47] Global Dead-Block Management for Task-Parallel Programs
    Manivannan, Madhavan
    Pericas, Miquel
    Papaefstathiou, Vassilis
    Stenstrom, Per
    [J]. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2018, 15 (03)
  • [48] Automatic Command Queue Scheduling for Task-Parallel Workloads in OpenCL
    Aji, Ashwin M.
    Pena, Antonio J.
    Balaji, Pavan
    Feng, Wu-chun
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING - CLUSTER 2015, 2015, : 42 - 51
  • [49] MultiCL: Enabling automatic scheduling for task-parallel workloads in OpenCL
    Aji, Ashwin M.
    Pena, Antonio J.
    Balaji, Pavan
    Feng, Wu-chun
    [J]. PARALLEL COMPUTING, 2016, 58 : 37 - 55
  • [50] TaskStream: Accelerating Task-Parallel Workloads by Recovering Program Structure
    Dadu, Vidushi
    Nowatzki, Tony
    [J]. ASPLOS '22: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, 2022, : 1 - 13