When are shrinking gradient Ricci soliton compact

被引:0
|
作者
Qu, Yuanyuan [1 ]
Wu, Guoqiang [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
关键词
Ricci soliton; Compact; Weighted Laplacian; CLASSIFICATION;
D O I
10.1016/j.difgeo.2023.102102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose (M4, g, f) is a complete shrinking gradient Ricci soliton. We give a sufficient condition for a soliton to be compact, generalizing previous result of Munteanu-Wang [17]. As an application, we give a classification of (M4, g, f) under some natural conditions. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Volume Growth of Shrinking Gradient Ricci-Harmonic Soliton
    Guoqiang Wu
    Shijin Zhang
    Results in Mathematics, 2017, 72 : 205 - 223
  • [2] Volume Growth of Shrinking Gradient Ricci-Harmonic Soliton
    Wu, Guoqiang
    Zhang, Shijin
    RESULTS IN MATHEMATICS, 2017, 72 (1-2) : 205 - 223
  • [3] Compact gradient shrinking Ricci solitons with positive curvature operator
    Cao, Xiaodong
    JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (03) : 425 - 433
  • [4] SOME CURVATURE IDENTITIES ON AN ALMOST CONFORMAL GRADIENT SHRINKING RICCI SOLITON
    Dutta, Tamalika
    Basu, Nirabhra
    Bhattacharyya, Arindam
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2015, 13 (02) : 163 - 178
  • [5] Compact gradient shrinking Ricci solitons with positive curvature operator
    Xiaodong Cao
    The Journal of Geometric Analysis, 2007, 17
  • [6] When does gradient Ricci soliton have one end?
    Qu, Yuanyuan
    Wu, Guoqiang
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 62 (03) : 679 - 691
  • [7] When does gradient Ricci soliton have one end?
    Yuanyuan Qu
    Guoqiang Wu
    Annals of Global Analysis and Geometry, 2022, 62 : 679 - 691
  • [8] The canonical shrinking soliton associated to a Ricci flow
    Esther Cabezas-Rivas
    Peter M. Topping
    Calculus of Variations and Partial Differential Equations, 2012, 43 : 173 - 184
  • [9] The canonical shrinking soliton associated to a Ricci flow
    Cabezas-Rivas, Esther
    Topping, Peter M.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (1-2) : 173 - 184
  • [10] Geometry of compact shrinking Ricci solitons
    Chen, Bang Yen
    Deshmukh, Sharief
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (01): : 13 - 21