The contour integral method for Feynman-Kac equation with two internal states

被引:0
|
作者
Ma, Fugui [1 ]
Zhao, Lijing [2 ,3 ]
Wang, Yejuan [1 ]
Deng, Weihua [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
[2] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Peoples R China
[3] Res & Dev Inst Northwestern Polytech Univ Shenzhen, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Contour integral method; Time marching scheme; Feynman-Kac equation; Two internal states; PREDICTOR-CORRECTOR APPROACH; NUMERICAL INVERSION; TIME-DISCRETIZATION; LAPLACE TRANSFORM; PARALLEL METHOD; ERROR ANALYSIS; QUADRATURE;
D O I
10.1016/j.camwa.2023.09.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the contour integral method for numerically solving the Feynman-Kac equation with two internal states Xu and Deng (2018) [23], describing the functional distribution of particles internal states. The striking benefits are obtained, including spectral accuracy, low computational complexity, sma l l memor y requirement, etc. We perform the error estimates and stability analyses, which are confirmed by numerical experiments.
引用
收藏
页码:80 / 100
页数:21
相关论文
共 50 条
  • [41] A path integral Monte Carlo (PIMC) method based on Feynman-Kac formula for electrical impedance tomography
    Ding, Cuiyang
    Zhou, Yijing
    Cai, Wei
    Zeng, Xuan
    Yan, Changhao
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 476
  • [42] Sparse Beltrami Coefficients, Integral Means of Conformal Mappings and the Feynman-Kac Formula
    Oleg Ivrii
    [J]. Potential Analysis, 2018, 48 : 437 - 457
  • [43] THE DIFFERENTIAL-EQUATION FOR THE FEYNMAN-KAC FORMULA WITH A LEBESGUE-STIELTJES MEASURE
    LAPIDUS, ML
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1986, 11 (01) : 1 - 13
  • [44] High Order Algorithm for the Time-Tempered Fractional Feynman-Kac Equation
    Chen, Minghua
    Deng, Weihua
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) : 867 - 887
  • [45] On the existence and asymptotic behaviour of solutions of an evolution equation and an application to the Feynman-Kac theorem
    Olszowy, L.
    Wedrychowicz, S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6758 - 6769
  • [46] Analysis of a WSGD scheme for backward fractional Feynman-Kac equation with nonsmooth data
    Hao, Liyao
    Tian, Wenyi
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (04)
  • [47] Path dependent Feynman-Kac formula for forward backward stochastic Volterra integral equations
    Wang, Hanxiao
    Yong, Jiongmin
    Zhang, Jianfeng
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02): : 603 - 638
  • [48] FEYNMAN-KAC PATH-INTEGRAL CALCULATION OF THE GROUND-STATE ENERGIES OF ATOMS
    KORZENIOWSKI, A
    FRY, JL
    ORR, DE
    FAZLEEV, NG
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (06) : 893 - 896
  • [49] A new ?walk on spheres? type method for fractional diffusion equation in high dimensions based on the Feynman-Kac formulas
    Su, Bihao
    Xu, Chenglong
    Sheng, Changtao
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 141
  • [50] Uniform Convergence of V-cycle Multigrid Algorithms for Two-Dimensional Fractional Feynman-Kac Equation
    Chen, Minghua
    Deng, Weihua
    Serra-Capizzano, Stefano
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (02) : 1034 - 1059